The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

collegeScorecard

collegeScorecard provides a tidied subset of the US College Scorecard dataset, containing institutional characteristics, enrollment, student aid, costs, and student outcomes at institutions of higher education in the United States.

Installation

Install collegeScorecard from CRAN with:

install.packages("collegeScorecard")

Or install the development version from r-universe

install.packages(
  "collegeScorecard",
  repos = c("https://gadenbuie.r-universe.dev", "https://cloud.r-project.org")
)

or from Github

# install.packages("pak")
pak::pak("gadenbuie/scorecard-db/pkg")

Example

Loading collegeScorecard gives you access to school and scorecard tables, which are tibbles with information about institutions and yearly costs and admissions data, respectively.

library(collegeScorecard)
skimr::skim_tee(school)
#> ── Data Summary ────────────────────────
#>                            Values
#> Name                       data  
#> Number of rows             11300 
#> Number of columns          25    
#> _______________________          
#> Column type frequency:           
#>   character                5     
#>   factor                   7     
#>   logical                  10    
#>   numeric                  3     
#> ________________________         
#> Group variables            None  
#> 
#> ── Variable type: character ────────────────────────────────────────────────────
#>   skim_variable n_missing complete_rate min max empty n_unique whitespace
#> 1 name                  0         1       3  93     0    10525          0
#> 2 city                  0         1       3  23     0     2915          0
#> 3 state                 0         1       2   2     0       59          0
#> 4 zip                   0         1       5  10     0     8757          0
#> 5 url                4943         0.563  15 123     0     5435          0
#> 
#> ── Variable type: factor ───────────────────────────────────────────────────────
#>   skim_variable         n_missing complete_rate ordered n_unique
#> 1 deg_predominant             998        0.912  FALSE          4
#> 2 deg_highest                1193        0.894  FALSE          4
#> 3 control                       1        1.00   FALSE          3
#> 4 locale_type                5415        0.521  FALSE          4
#> 5 locale_size                5415        0.521  FALSE          6
#> 6 adm_req_test               8685        0.231  FALSE          4
#> 7 religious_affiliation     10449        0.0753 FALSE         60
#>   top_counts                                
#> 1 Cer: 5483, Bac: 2549, Ass: 1819, Gra: 451 
#> 2 Cer: 4287, Gra: 2517, Ass: 2111, Bac: 1192
#> 3 For: 5908, Non: 2760, Pub: 2631           
#> 4 Cit: 2812, Sub: 1750, Tow: 822, Rur: 501  
#> 5 Lar: 2809, Sma: 887, Mid: 866, Dis: 508   
#> 6 Con: 1205, Not: 1015, Req: 273, Rec: 122  
#> 7 Rom: 232, Uni: 85, Bap: 56, Pre: 54       
#> 
#> ── Variable type: logical ──────────────────────────────────────────────────────
#>    skim_variable    n_missing complete_rate    mean count              
#>  1 is_hbcu               5412         0.521 0.0168  FAL: 5789, TRU: 99 
#>  2 is_pbi                5412         0.521 0.0105  FAL: 5826, TRU: 62 
#>  3 is_annhi              5412         0.521 0.00272 FAL: 5872, TRU: 16 
#>  4 is_tribal             5412         0.521 0.00594 FAL: 5853, TRU: 35 
#>  5 is_aanapii            5412         0.521 0.0350  FAL: 5682, TRU: 206
#>  6 is_hsi                5412         0.521 0.0909  FAL: 5353, TRU: 535
#>  7 is_nanti              5412         0.521 0.00543 FAL: 5856, TRU: 32 
#>  8 is_only_men           5412         0.521 0.0102  FAL: 5828, TRU: 60 
#>  9 is_only_women         5412         0.521 0.00510 FAL: 5858, TRU: 30 
#> 10 is_only_distance      2832         0.749 0.00709 FAL: 8408, TRU: 60 
#> 
#> ── Variable type: numeric ──────────────────────────────────────────────────────
#>   skim_variable n_missing complete_rate      mean         sd       p0      p25
#> 1 id                    0         1     2550768.  8357052.   100654   182632. 
#> 2 latitude           5412         0.521      37.3       5.87    -14.3     33.9
#> 3 longitude          5412         0.521     -90.4      18.2    -171.     -97.5
#>        p50      p75       p100 hist 
#> 1 367422   455666.  49664501   ▇▁▁▁▁
#> 2     38.6     41.2       71.3 ▁▁▆▇▁
#> 3    -86.3    -78.9      171.  ▂▇▁▁▁
skimr::skim_tee(scorecard)
#> ── Data Summary ────────────────────────
#>                            Values
#> Name                       data  
#> Number of rows             183306
#> Number of columns          24    
#> _______________________          
#> Column type frequency:           
#>   character                1     
#>   numeric                  23    
#> ________________________         
#> Group variables            None  
#> 
#> ── Variable type: character ────────────────────────────────────────────────────
#>   skim_variable n_missing complete_rate min max empty n_unique whitespace
#> 1 academic_year         0             1   7   7     0       27          0
#> 
#> ── Variable type: numeric ──────────────────────────────────────────────────────
#>    skim_variable             n_missing complete_rate        mean          sd
#>  1 id                                0         1     1163825.    5311085.   
#>  2 n_undergrads                  20563         0.888    2285.       5101.   
#>  3 cost_tuition_in               90259         0.508   12429.      10992.   
#>  4 cost_tuition_out              92793         0.494   14882.      10390.   
#>  5 cost_books                    92332         0.496    1101.        623.   
#>  6 cost_room_board_on           136207         0.257    7961.       3322.   
#>  7 cost_room_board_off           97476         0.468    7963.       3392.   
#>  8 cost_avg                     104675         0.429   15809.       8216.   
#>  9 cost_avg_income_0_30k        105507         0.424   13996.       7669.   
#> 10 cost_avg_income_30_48k       115448         0.370   14736.       7723.   
#> 11 cost_avg_income_48_75k       120294         0.344   16807.       7750.   
#> 12 cost_avg_income_75_110k      129900         0.291   19224.       7843.   
#> 13 cost_avg_income_110k_plus    138593         0.244   21352.       9036.   
#> 14 amnt_earnings_med_10y        143433         0.218   35228.      15046.   
#> 15 rate_completion              134721         0.265       0.333       0.237
#> 16 rate_admissions              126465         0.310       0.698       0.210
#> 17 score_sat_avg                153731         0.161    1076.        135.   
#> 18 score_act_p25                156788         0.145      20.2         3.69 
#> 19 score_act_p75                156794         0.145      25.4         3.55 
#> 20 score_sat_verbal_p25         156906         0.144     484.         72.3  
#> 21 score_sat_verbal_p75         156905         0.144     592.         69.3  
#> 22 score_sat_math_p25           156771         0.145     486.         75.7  
#> 23 score_sat_math_p75           156773         0.145     594.         72.3  
#>         p0        p25        p50        p75     p100 hist 
#>  1  100654 164562     213987     416670     49664501 ▇▁▁▁▁
#>  2       0    117        490       2050       253594 ▇▁▁▁▁
#>  3       0   4053       9556      16888        74787 ▇▂▁▁▁
#>  4       0   7475      12336      18810        74787 ▇▃▁▁▁
#>  5       0    800       1000       1354.       28000 ▇▁▁▁▁
#>  6       0   5496       7560      10008        27000 ▃▇▂▁▁
#>  7       0   5725       7474       9728       106962 ▇▁▁▁▁
#>  8 -103168   9319      15281      21090.      112050 ▁▁▇▁▁
#>  9 -117833   7952      13336      19036.      111962 ▁▁▇▂▁
#> 10  -44508   8618.     14055      19740       113384 ▁▇▃▁▁
#> 11  -17804  10711.     16289      21716       113427 ▂▇▁▁▁
#> 12  -18045  13149.     18933      24285.      114298 ▁▇▁▁▁
#> 13  -17487  14415      20448      26533       113314 ▁▇▁▁▁
#> 14    8400  25400      32900      42000       250000 ▇▁▁▁▁
#> 15       0      0.145      0.3        0.498        1 ▇▇▅▂▁
#> 16       0      0.569      0.725      0.854        1 ▁▂▅▇▇
#> 17     514    989       1056       1145         1599 ▁▂▇▂▁
#> 18       1     18         20         22           35 ▁▁▇▃▁
#> 19       2     23         25         27           36 ▁▁▂▇▂
#> 20     100    440        480        520          799 ▁▁▇▃▁
#> 21     100    540        590        630          800 ▁▁▂▇▂
#> 22     100    440        475        520          799 ▁▁▇▃▁
#> 23     100    550        588        630          800 ▁▁▂▇▂

The help documentation of each dataset provides a short description of each column and the source of the data. Additional information is included in the packaged data dictionary.

readRDS(system.file("scorecard-data-dictionary.rds", package = "collegeScorecard"))
#> $info
#> # A tibble: 3,305 × 11
#>    name_of_data_element        dev_category developer_friendly_n…¹ api_data_type
#>    <chr>                       <chr>        <chr>                  <chr>        
#>  1 Unit ID for institution     root         id                     integer      
#>  2 8-digit OPE ID for institu… root         ope8_id                string       
#>  3 6-digit OPE ID for institu… root         ope6_id                string       
#>  4 Institution name            school       name                   autocomplete 
#>  5 City                        school       city                   autocomplete 
#>  6 State postcode              school       state                  string       
#>  7 ZIP code                    school       zip                    string       
#>  8 Accreditor for institution  school       accreditor             string       
#>  9 URL for institution's home… school       school_url             string       
#> 10 URL for institution's net … school       price_calculator_url   string       
#> # ℹ 3,295 more rows
#> # ℹ abbreviated name: ¹​developer_friendly_name
#> # ℹ 7 more variables: data_type <chr>, index <chr>, variable_name <chr>,
#> #   source <chr>, shown_use_on_site <chr>, notes <chr>, has_labels <lgl>
#> 
#> $labels
#> # A tibble: 293 × 4
#>    variable_name value label                                     notes
#>    <chr>         <chr> <chr>                                     <chr>
#>  1 MAIN          0     Not main campus                           <NA> 
#>  2 MAIN          1     Main campus                               <NA> 
#>  3 PREDDEG       0     Not classified                            <NA> 
#>  4 PREDDEG       1     Predominantly certificate-degree granting <NA> 
#>  5 PREDDEG       2     Predominantly associate's-degree granting <NA> 
#>  6 PREDDEG       3     Predominantly bachelor's-degree granting  <NA> 
#>  7 PREDDEG       4     Entirely graduate-degree granting         <NA> 
#>  8 HIGHDEG       0     Non-degree-granting                       <NA> 
#>  9 HIGHDEG       1     Certificate degree                        <NA> 
#> 10 HIGHDEG       2     Associate degree                          <NA> 
#> # ℹ 283 more rows

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.