The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette describes some of the contrast coding helpers this
package provides. It should be noted that this package does not seek to
provide an interface for creating hypothesis matrices and their
respective contrast matrices. For that functionality you might look into
the multcomp
or hypr
packages. The contrast
functionality of this package is focused on the following:
This vignette will not go into detail how different contrast schemes are derived or interpreted, but will describe some of the high level differences. I recommend reading the following:
I also have a few blog posts about contrast coding; if you need further explanation of contrasts and more working examples beyond this vignette, read the first one below:
Statistical models such as linear regression need numbers to operate with, but often we have discrete categories that we want to model such as ethnicity, country, treatment group, etc. Typically, we have some comparisons in mind before we do our statistics: compare the group receiving treatment to a reference level who did not, or something like compare group A to group B. Contrast coding is the process of assigning numbers that encode the comparisons we want to make prior to fitting a statistical model. What this allows us to do is strategically set up our model to be interpretable in a way that’s meaningful to us even though the fit of the statistical model is unchanged. So, contrast coding is important for inferential statistics and reporting coefficients correctly, but is not that important for group-level predictions.
Throughout this vignette and package, I refer to different contrast schemes, which I define as an encoding of a principled set of comparisons for an arbitrary number of factor levels. The important bit here is the arbitrary number part.
To start with an example, consider an experiment where people are tasked with keeping track of the location of different shapes under different levels of cognitive load, such as needing to remember different strings of numbers. Basically, a change detection task with a digit span cognitive load manipulation. We’ll call the levels of this cognitive load factor none, low, and high. A priori, the speed with which people detect a shape that changes location should vary depending on the cognitive load. Specifically, reaction time (RT) should be slower when cognitive load is higher.
What kinds of comparisons could we make, and how do we encode these in our statistical model? One comparison might be to compare low to none, then high to none. Another could be to compare low to none, then high to low. Yet another could be to compare low to none, then high to low and none together. Or, we could compare each level to the average across the conditions.1 Specifying these different comparisons, which will really just amount to differences in group means, is our goal here.
In our example, what if we went found that our high cognitive load condition wasn’t high enough? What if we needed to add an extra-high level? We could add a comparison of extra-high to none, or compare extra-high to high. Or, we could compare extra-high to none plus low plus high together. Ideally, if we’re going for pairwise comparisons from a reference level, successive differences between levels, or some kind of nested set of comparisons, we would want to be able to specify this consistently without needing to revisit every instance of specifying our comparisons just to accommodate the new level.
Throughout this vignette and package, I refer to different contrast schemes, which I define as an encoding of a principled set of comparisons for an arbitrary number of factor levels. The important bit here is the arbitrary number part such that if the goal is to take pairwise comparisons from a reference level, then adding a new level should only amount to encoding an additional pairwise comparison to the same reference level. I’ll contrast this approach to a more manual approach to contrast coding, where you would explicitly write out, in code, every single comparison for every single factor you want to make. Consider if we added a new three-level predictor crossed with our four level example from before (we’ll call the new predictor group with levels A, B, C). If we also just wanted to do pairwise comparisons, a scheme approach would encode pairwise comparisons for cognitive load and pairwise comparisons for the new factor. The manual approach would say to encode low-none, high-none, and extra high-none; then, encode B-A, and C-A. If we introduce a new group D later, we have to remember to go in and specify D-A too.
So, while the manual approach is maximally explicit about exactly
what we want to compare, it’s also more things to write out and more
chances that we make a mistake while implementing it. Given that
contrasts are specified using matrices in R, the chances of a mistake
are high. Accordingly, R provides a few functions that implement common
contrast schemes such as contr.treatment
and
contr.sum
, which return matrices given a number of levels.
However, there’s some trickiness with them. Below is a quick list of
some issues this package attempts to circumvent; if you’re familiar with
contrast coding from your own work, some of this may sound familiar and
some of it may surprise you.
dim()
, dimnames()
, or
colnames()
. In my experience, I rarely see people in my
field do this, and so I believe it would be naive to expect people to
suddenly (learn how to and) start doing so.contr.treatment
, places
the reference level as the first level alphabetically while
contr.sum
places the reference level as the LAST level
alphabetically. To verify for yourself, try running
contr.treatment(5)
and contr.sum(5)
.
respectively, the reference levels are identifiable by the rows
containing either all 0s or all -1s.-contr.sum(2)/2
. However, this does not
generalize when the number of levels is greater than 2,
i.e,. -contr.sum(3)/2
will not give you what you
expect.contr.helmert
returns unscaled matrices, giving effect
estimates that need to be manually scaled. Tests of statistical
significance are still meaningful, but interpreting the magnitude of
effects using matrices from this function are likely to be incorrect if
not scaled manually.I’m going to use the mtcars dataset just to have something to work with. We’ll convert a bunch of the columns to factors up front.
mdl_data <-
mtcars |>
as_tibble() |>
mutate(cyl = factor(cyl),
twolevel = factor(rep(c("a", "b"), times = nrow(mtcars) / 2)),
gear = factor(gear),
carb = factor(carb))
We can inspect the contrasts for the factors using
contrasts()
, which will use the default contrasts for
unordered factors
options("contrasts") # Show defaults for unordered and ordered
#> $contrasts
#> unordered ordered
#> "contr.treatment" "contr.poly"
contrasts(mdl_data$twolevel)
#> b
#> a 0
#> b 1
contrasts(mdl_data$carb) # Note the reference level
#> 2 3 4 6 8
#> 1 0 0 0 0 0
#> 2 1 0 0 0 0
#> 3 0 1 0 0 0
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
We can see that the levels for carb
are reflected in the
coefficient labels:
summary(lm(mpg ~ carb, data = mdl_data))
#>
#> Call:
#> lm(formula = mpg ~ carb, data = mdl_data)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -7.243 -3.325 0.000 2.360 8.557
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 25.343 1.854 13.670 2.21e-13 ***
#> carb2 -2.943 2.417 -1.218 0.23435
#> carb3 -9.043 3.385 -2.672 0.01285 *
#> carb4 -9.553 2.417 -3.952 0.00053 ***
#> carb6 -5.643 5.243 -1.076 0.29174
#> carb8 -10.343 5.243 -1.973 0.05927 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 4.905 on 26 degrees of freedom
#> Multiple R-squared: 0.4445, Adjusted R-squared: 0.3377
#> F-statistic: 4.161 on 5 and 26 DF, p-value: 0.006546
But if we changed the contrasts ourselves those helpful labels go away and are replaced with numeric indices. Note that the level names were originally also numbers, so it would be easy to get mixed up at this point.
mdl_data2 <- mdl_data
contrasts(mdl_data2$carb) <- contr.sum(6)
contrasts(mdl_data2$carb) # Note the reference level
#> [,1] [,2] [,3] [,4] [,5]
#> 1 1 0 0 0 0
#> 2 0 1 0 0 0
#> 3 0 0 1 0 0
#> 4 0 0 0 1 0
#> 6 0 0 0 0 1
#> 8 -1 -1 -1 -1 -1
summary(lm(mpg ~ carb, data = mdl_data2))
#>
#> Call:
#> lm(formula = mpg ~ carb, data = mdl_data2)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -7.243 -3.325 0.000 2.360 8.557
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 19.0888 1.3373 14.274 8.18e-14 ***
#> carb1 6.2540 2.0198 3.096 0.00465 **
#> carb2 3.3112 1.8418 1.798 0.08383 .
#> carb3 -2.7888 2.6710 -1.044 0.30605
#> carb4 -3.2988 1.8418 -1.791 0.08493 .
#> carb5 0.6112 4.2221 0.145 0.88602
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 4.905 on 26 degrees of freedom
#> Multiple R-squared: 0.4445, Adjusted R-squared: 0.3377
#> F-statistic: 4.161 on 5 and 26 DF, p-value: 0.006546
Now I’ll introduce the main workhorse of this package: the
set_contrasts
function. This function features a special
syntax to quickly set contrast schemes. I’ll introduce features one at a
time.
First, we’ll set carb
to use sum coding as we did
before. We do this using two-sided formulas, where the left hand side of
the formula is a column in our dataset and the right hand side includes
information about the contrasts we want to set. For example, this takes
the form varname ~ code_by
. Below, we specify that we want
carb
to use contrasts generated by the
sum_code
function. Two things to note:
set_contrasts
will automatically
coerce specified columns into factors, so you don’t need to worry about
calling factor()
on columns first. Note that the function
will also give messages about other factors that you haven’t set
explicitly.
mdl_data3 <- set_contrasts(mdl_data, carb ~ sum_code)
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
contrasts(mdl_data2$carb) # matrix from before
#> [,1] [,2] [,3] [,4] [,5]
#> 1 1 0 0 0 0
#> 2 0 1 0 0 0
#> 3 0 0 1 0 0
#> 4 0 0 0 1 0
#> 6 0 0 0 0 1
#> 8 -1 -1 -1 -1 -1
contrasts(mdl_data3$carb) # new matrix, note the column names
#> 2 3 4 6 8
#> 1 -1 -1 -1 -1 -1
#> 2 1 0 0 0 0
#> 3 0 1 0 0 0
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
Note that, unlike last time, the reference level is now the first
level alphabetically and the labels are retained (compare the contrast
matrices) For schemes that have a singular reference level, setting
contrasts with set_contrasts
will always set the reference
level to the first level alphabetically. Currently, the reference level
for carb
is 1
. If we want to change the
reference level, we use the +
operator in our formula. The
change to the formula looks like
varname ~ code_by + reference
. Let’s change it to
3
:
mdl_data4 <- set_contrasts(mdl_data, carb ~ sum_code + "3")
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
contrasts(mdl_data4$carb)
#> 1 2 4 6 8
#> 1 1 0 0 0 0
#> 2 0 1 0 0 0
#> 3 -1 -1 -1 -1 -1
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
Note that when using sum coding, the intercept will be the mean of the group means:
# mean of group means:
group_means <- summarize(mdl_data4, grp_mean = mean(mpg), .by = "carb")
group_means
#> # A tibble: 6 × 2
#> carb grp_mean
#> <fct> <dbl>
#> 1 4 15.8
#> 2 1 25.3
#> 3 2 22.4
#> 4 3 16.3
#> 5 6 19.7
#> 6 8 15
mean(group_means$grp_mean)
#> [1] 19.08881
# model coefficients
coef(lm(mpg ~ carb, data = mdl_data4))
#> (Intercept) carb1 carb2 carb4 carb6 carb8
#> 19.0888095 6.2540476 3.3111905 -3.2988095 0.6111905 -4.0888095
Let’s say, hypothetically, we wanted to get differences of each
comparison level to the grand mean, but we also wanted the intercept to
be not the grand mean but the mean of our reference level? We can set
this using the *
operator:
varname ~ code_by + reference * intercept
.
mdl_data5 <- set_contrasts(mdl_data, carb ~ sum_code + 3 * 3)
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
contrasts(mdl_data5$carb)
#> 1 2 4 6 8
#> 1 2 1 1 1 1
#> 2 1 2 1 1 1
#> 3 0 0 0 0 0
#> 4 1 1 2 1 1
#> 6 1 1 1 2 1
#> 8 1 1 1 1 2
coef(lm(mpg ~ carb, data = mdl_data5))
#> (Intercept) carb1 carb2 carb4 carb6 carb8
#> 16.3000000 6.2540476 3.3111905 -3.2988095 0.6111905 -4.0888095
Finally, let’s say we wanted labels that were a bit more clear about
what the comparisons are here. We can set the label names ourselves
using the |
operator:
varname ~ code_by + reference * intercept | labels
mdl_data6 <- set_contrasts(mdl_data,
carb ~ sum_code + 3 * 3 | c("1-3",
"2-3",
"4-3",
"6-3",
"8-3"))
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
contrasts(mdl_data5$carb)
#> 1 2 4 6 8
#> 1 2 1 1 1 1
#> 2 1 2 1 1 1
#> 3 0 0 0 0 0
#> 4 1 1 2 1 1
#> 6 1 1 1 2 1
#> 8 1 1 1 1 2
coef(lm(mpg ~ carb, data = mdl_data6))
#> (Intercept) carb1-3 carb2-3 carb4-3 carb6-3 carb8-3
#> 16.3000000 6.2540476 3.3111905 -3.2988095 0.6111905 -4.0888095
Here’s what it would look like if you tried to manually do this yourself. It’s highly unlikely you would correctly specify every single value and every single label correctly on the first go (I actually messed up myself while writing out the matrix).
mdl_data7 <- mdl_data
my_contrasts <- matrix(c(2, 1, 0, 1, 1, 1,
1, 2, 0, 1, 1, 1,
1, 1, 0, 2, 1, 1,
1, 1, 0, 1, 2, 1,
1, 1, 0, 1, 1, 2),
nrow = 6)
dimnames(my_contrasts) <-
list(
c("1", "2", "3", "4", "6", "8"),
c("1-3", "2-3", "4-3", "6-3", "8-3")
)
contrasts(mdl_data7$carb) <- my_contrasts
contrasts(mdl_data7$carb)
#> 1-3 2-3 4-3 6-3 8-3
#> 1 2 1 1 1 1
#> 2 1 2 1 1 1
#> 3 0 0 0 0 0
#> 4 1 1 2 1 1
#> 6 1 1 1 2 1
#> 8 1 1 1 1 2
To see how this can get even more error prone, consider a contrast matrix like the one below. Personally I would not trust myself to get the matrix correct, and if I ever had to add a level to the design it would be obscene to try and edit it.
mdl_data8 <- set_contrasts(mdl_data, carb ~ helmert_code * 4)
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
MASS::fractions(contrasts(mdl_data8$carb))
#> <2 <3 <4 <6 <8
#> 1 -1/2 -1/3 -1 0 0
#> 2 1/2 -1/3 -1 0 0
#> 3 0 2/3 -1 0 0
#> 4 0 0 0 0 0
#> 6 0 0 -3/4 1 0
#> 8 0 0 -3/4 1/5 1
The work would compound when we have multiple factors, but with the
set_contrasts
function we can specify what our desired
scheme is easily:
mdl_data9 <- set_contrasts(mdl_data,
carb ~ helmert_code * 4,
cyl ~ scaled_sum_code + 4,
twolevel ~ scaled_sum_code + "a",
gear ~ helmert_code)
MASS::fractions(contrasts(mdl_data9$carb))
#> <2 <3 <4 <6 <8
#> 1 -1/2 -1/3 -1 0 0
#> 2 1/2 -1/3 -1 0 0
#> 3 0 2/3 -1 0 0
#> 4 0 0 0 0 0
#> 6 0 0 -3/4 1 0
#> 8 0 0 -3/4 1/5 1
MASS::fractions(contrasts(mdl_data9$cyl))
#> 6 8
#> 4 -1/3 -1/3
#> 6 2/3 -1/3
#> 8 -1/3 2/3
MASS::fractions(contrasts(mdl_data9$twolevel))
#> b
#> a -1/2
#> b 1/2
MASS::fractions(contrasts(mdl_data9$gear))
#> <4 <5
#> 3 -1/2 -1/3
#> 4 1/2 -1/3
#> 5 0 2/3
Practically speaking, the most common things you’ll be doing is
setting a contrast scheme and maybe changing the reference level, so the
+
operator is very important.
A related function is the enlist_contrasts
function,
which follows the same exact rules as set_contrasts
but
will return a list of contrasts instead of setting the contrasts to the
data itself. Henceforth, when I’m not going to use the dataframe in an
example, I’ll just use this to show the contrast matrices.
enlist_contrasts(mdl_data,
carb ~ helmert_code * 4,
cyl ~ scaled_sum_code + 4)
#> Expect contr.treatment or contr.poly for unset factors: gear twolevel
#> $carb
#> <2 <3 <4 <6 <8
#> 1 -0.5 -0.3333333 -1.00 0.0 0
#> 2 0.5 -0.3333333 -1.00 0.0 0
#> 3 0.0 0.6666667 -1.00 0.0 0
#> 4 0.0 0.0000000 0.00 0.0 0
#> 6 0.0 0.0000000 -0.75 1.0 0
#> 8 0.0 0.0000000 -0.75 0.2 1
#>
#> $cyl
#> 6 8
#> 4 -0.3333333 -0.3333333
#> 6 0.6666667 -0.3333333
#> 8 -0.3333333 0.6666667
I showed a few functions that generate contrasts like
sum_code
and scaled_sum_code
and
helmert_code
. Below is a list of functions provided by this
package:
treatment_code
: Pairwise comparisons to a reference
level, intercept equals the reference level (equivalent to
contr.treatment
)sum_code
: Comparisons to the grand mean, intercept is
the grand mean (equivalent to contr.sum
, but reference
level is the first level)scaled_sum_code
: Pairwise comparisons to a reference
level, intercept equals the grand meanhelmert_code
: Nested comparisons starting from the
first level. Note this is NOT equivalent to contr.helmert
,
as the latter gives an unscaled matrix.reverse_helmert_code
: Nested comparisons starting from
the last level.backward_difference_code
: Successive differences. For
levels A, B, C, gives the differences B-A and C-Bforward_difference_code
: Successive differences. For
levels A, B, C, gives the differences A-B and B-C.cumulative_split_code
: Dichotomous differences. For
levels A, B, C, D, gives the differences A-(B+C+D), (A+B)-(C+D),
(A+B+C)-D.orth_polynomial_code
: Orthogonal polynomial coding,
equivalent to contr.poly
.raw_polynomial_code
: Raw polynomial coding, I do not
recommend using this unless you know what you’re getting into.polynomial_code
: An alias for
orthogonal_polynomial_code
You can also use contrast functions from any other package so long as the first argument is the number of levels used to generate the matrix. However, again, if there’s a singular level used for the reference level, this will always be set to the first level regardless of what the original matrix was.
# all equivalent to carb ~ sum_code
foo <- sum_code
enlist_contrasts(mdl_data, carb ~ contr.sum)
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
#> $carb
#> 2 3 4 6 8
#> 1 -1 -1 -1 -1 -1
#> 2 1 0 0 0 0
#> 3 0 1 0 0 0
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
enlist_contrasts(mdl_data, carb ~ sum_code)
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
#> $carb
#> 2 3 4 6 8
#> 1 -1 -1 -1 -1 -1
#> 2 1 0 0 0 0
#> 3 0 1 0 0 0
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
enlist_contrasts(mdl_data, carb ~ foo)
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
#> $carb
#> 2 3 4 6 8
#> 1 -1 -1 -1 -1 -1
#> 2 1 0 0 0 0
#> 3 0 1 0 0 0
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
If you want to suppress this behavior, you can use the wrapper
I
from base R. Note this will also result in not setting
the labels for you: it will use the generated matrix as-is. This is
useful if you explicitly create a matrix and want to make sure the
reference level isn’t shifted around.
enlist_contrasts(mdl_data, carb ~ I(contr.sum))
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
#> Warning in .postprocess_matrix(new_contrasts, code_by, reference_level, : No
#> comparison labels set and as_is=TRUE, contrast labels will be column indices.
#> $carb
#> 1 2 3 4 5
#> 1 1 0 0 0 0
#> 2 0 1 0 0 0
#> 3 0 0 1 0 0
#> 4 0 0 0 1 0
#> 5 0 0 0 0 1
#> 6 -1 -1 -1 -1 -1
One last quick note is that you can keep the parentheses with the function, so if your tab-autocomplete puts parentheses you don’t have to worry about it.
enlist_contrasts(mdl_data, carb ~ contr.sum())
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
#> $carb
#> 2 3 4 6 8
#> 1 -1 -1 -1 -1 -1
#> 2 1 0 0 0 0
#> 3 0 1 0 0 0
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
However, the function does need to exist; the following won’t run:
If you know you’re going to use the same scheme for multiple variables, but don’t need to set the reference level or labels for any one in particular, you can use tidyselect functionality to set multiple contrasts. I’ll show a few examples of how to do this.
First, you can specify multiple variables on the left hand side using
the +
operator.
# equivalent to: enlist_contrasts(mdl_data, cyl ~ sum_code, gear ~ sum_code)
enlist_contrasts(mdl_data, cyl + gear ~ sum_code)
#> Expect contr.treatment or contr.poly for unset factors: carb twolevel
#> $cyl
#> 6 8
#> 4 -1 -1
#> 6 1 0
#> 8 0 1
#>
#> $gear
#> 4 5
#> 3 -1 -1
#> 4 1 0
#> 5 0 1
You can also use selecting functions like the below:
enlist_contrasts(mdl_data, where(is.factor) ~ sum_code)
#> $cyl
#> 6 8
#> 4 -1 -1
#> 6 1 0
#> 8 0 1
#>
#> $gear
#> 4 5
#> 3 -1 -1
#> 4 1 0
#> 5 0 1
#>
#> $carb
#> 2 3 4 6 8
#> 1 -1 -1 -1 -1 -1
#> 2 1 0 0 0 0
#> 3 0 1 0 0 0
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
#>
#> $twolevel
#> b
#> a -1
#> b 1
# see also enlist_contrasts(mdl_data, where(is.unordered) ~ sum_code)
# see also enlist_contrasts(mdl_data, where(is.numeric) ~ sum_code)
This also lets you programmatically set contrasts like so:
these_vars <- c("cyl", "gear")
enlist_contrasts(mdl_data, all_of(these_vars) ~ sum_code)
#> Expect contr.treatment or contr.poly for unset factors: carb twolevel
#> $cyl
#> 6 8
#> 4 -1 -1
#> 6 1 0
#> 8 0 1
#>
#> $gear
#> 4 5
#> 3 -1 -1
#> 4 1 0
#> 5 0 1
However, you have to ensure that no variables are duplicated. The following are not allowed regardless of whether the right right hand sides evaluate to the same contrast schemes.
enlist_contrasts(mdl_data,
cyl ~ sum_code,
where(is.factor) ~ sum_code) # cyl is a factor for mdl_data
enlist_contrasts(mdl_data,
cyl ~ sum_code,
cyl + gear ~ sum_code) # cyl can't be specified twice
You can check out the tidyselect package for more information.
is.unordered
is provided in this package as an analogue to
is.ordered
.
You can also set contrasts using things other than a function.
Specifically, you can pass the following classes to code_by
in the two-sided formulas:
array
matrix
hypr
function
(must return a contrast matrix, cannot be an
anonymous function)symbol
(must evaluate to a contrast matrix though)If you’re using a custom matrix for a tricky analysis, then you can specify the matrix yourself and then pass it to set_contrasts:
my_matrix <- contr.sum(6) / 2
enlist_contrasts(mdl_data, carb ~ my_matrix)
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
#> $carb
#> 2 3 4 6 8
#> 1 -0.5 -0.5 -0.5 -0.5 -0.5
#> 2 0.5 0.0 0.0 0.0 0.0
#> 3 0.0 0.5 0.0 0.0 0.0
#> 4 0.0 0.0 0.5 0.0 0.0
#> 6 0.0 0.0 0.0 0.5 0.0
#> 8 0.0 0.0 0.0 0.0 0.5
You can also specify a list of formulas and pass that to different functions.
my_contrasts <- list(carb ~ contr.sum, gear ~ scaled_sum_code)
enlist_contrasts(mdl_data, my_contrasts)
#> Expect contr.treatment or contr.poly for unset factors: cyl twolevel
#> $carb
#> 2 3 4 6 8
#> 1 -1 -1 -1 -1 -1
#> 2 1 0 0 0 0
#> 3 0 1 0 0 0
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
#>
#> $gear
#> 4 5
#> 3 -0.3333333 -0.3333333
#> 4 0.6666667 -0.3333333
#> 5 -0.3333333 0.6666667
mdl_data12 <- set_contrasts(mdl_data, my_contrasts)
#> Expect contr.treatment or contr.poly for unset factors: cyl twolevel
This functionality is very important for the next function I’ll discuss.
It can be very useful to get a summary of the different factors and
their contrasts in your dataset. The glimpse_contrasts
function does this for you by passing it your dataset and your
contrasts.
my_contrasts <- list(carb ~ contr.sum,
gear ~ treatment_code + 4,
twolevel ~ scaled_sum_code * "b",
cyl ~ helmert_code)
mdl_data$twolevel
#> [1] a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b
#> Levels: a b
enlist_contrasts(mdl_data, cyl ~ scaled_sum_code + 6 * 6)
#> Expect contr.treatment or contr.poly for unset factors: gear carb twolevel
#> $cyl
#> 4 8
#> 4 1 0
#> 6 0 0
#> 8 0 1
mdl_data13 <- set_contrasts(mdl_data, my_contrasts)
glimpse_contrasts(mdl_data13, my_contrasts)
#> factor n level_names scheme reference intercept
#> 1 carb 6 1, 2, 3,.... contr.sum <NA> grand mean
#> 2 gear 3 3, 4, 5 treatment_code 4 mean(4)
#> 3 twolevel 2 a, b scaled_sum_code <NA> mean(b)
#> 4 cyl 3 4, 6, 8 helmert_code <NA> grand mean
Note that if you haven’t actually set your contrasts to the dataset, you’ll receive a series of warnings:
glimpse_contrasts(mdl_data, my_contrasts)
#> Warning: Contrasts for these factors in `mdl_data` don't match formulas:
#> - carb
#> - gear
#> - twolevel
#> - cyl
#> To fix, be sure to run:
#> mdl_data <- set_contrasts(mdl_data, my_contrasts)
#> factor n level_names scheme reference intercept
#> 1 carb 6 1, 2, 3,.... contr.sum <NA> grand mean
#> 2 gear 3 3, 4, 5 treatment_code 4 mean(4)
#> 3 twolevel 2 a, b scaled_sum_code <NA> mean(b)
#> 4 cyl 3 4, 6, 8 helmert_code <NA> grand mean
You can also specify the formulas directly, like with
set_contrasts
and enlist_contrasts
— but
usually you’ll want to have a list of formulas and pass this to the
different functions. Note how we retyped everything we typed above just
to get the summary table.
glimpse_contrasts(mdl_data13,
carb ~ contr.sum,
gear ~ treatment_code + 4,
twolevel ~ scaled_sum_code * "b",
cyl ~ helmert_code)
#> factor n level_names scheme reference intercept
#> 1 carb 6 1, 2, 3,.... contr.sum <NA> grand mean
#> 2 gear 3 3, 4, 5 treatment_code 4 mean(4)
#> 3 twolevel 2 a, b scaled_sum_code <NA> mean(b)
#> 4 cyl 3 4, 6, 8 helmert_code <NA> grand mean
If you don’t provide any contrast information,
glimpse_contrasts
will assume that factors should be using
their default contrasts. If the contrasts are not the same as the
defaults, you’ll receive warnings:
glimpse_contrasts(mdl_data) # no warnings
#> factor n level_names scheme reference intercept orthogonal
#> cyl cyl 3 4, 6, 8 contr.treatment 4 mean(4) NA
#> gear gear 3 3, 4, 5 contr.treatment 3 mean(3) NA
#> carb carb 6 1, 2, 3,.... contr.treatment 1 mean(1) NA
#> twolevel twolevel 2 a, b contr.treatment a mean(a) NA
#> centered dropped_trends explicitly_set
#> cyl NA NA FALSE
#> gear NA NA FALSE
#> carb NA NA FALSE
#> twolevel NA NA FALSE
glimpse_contrasts(mdl_data13) # warnings
#> Warning in .warn_if_nondefault(default_contrasts, unset_factors, factor_sizes, : Unset factors do not use default contr.treatment or contr.poly. Glimpse table may be unreliable.
#> - cyl
#> - gear
#> - carb
#> - twolevel
#> factor n level_names scheme reference intercept orthogonal
#> cyl cyl 3 4, 6, 8 ??? <NA> grand mean NA
#> gear gear 3 3, 4, 5 ??? 4 mean(4) NA
#> carb carb 6 1, 2, 3,.... ??? 1 grand mean NA
#> twolevel twolevel 2 a, b ??? a mean(b) NA
#> centered dropped_trends explicitly_set
#> cyl NA NA FALSE
#> gear NA NA FALSE
#> carb NA NA FALSE
#> twolevel NA NA FALSE
If there are mismatches between the data and the contrasts specified by the formulas, you’ll also get warnings:
glimpse_contrasts(mdl_data,
carb ~ contr.sum,
gear ~ treatment_code * 4,
cyl ~ contr.treatment | c("diff1", "diff2"))
#> Warning: Contrasts for these factors in `mdl_data` don't match formulas:
#> - carb
#> - gear
#> Comparison labels for contrasts in `mdl_data` don't match:
#> - cyl (expected `diff1, diff2` but found `6, 8`)
#> To fix, be sure to run:
#> mdl_data <- set_contrasts(mdl_data,
#> carb ~ contr.sum,
#> gear ~ treatment_code * 4,
#> cyl ~ contr.treatment | c("diff1", "diff2"))
#> factor n level_names scheme reference intercept
#> 1 carb 6 1, 2, 3,.... contr.sum <NA> grand mean
#> 2 gear 3 3, 4, 5 treatment_code <NA> mean(4)
#> 3 cyl 3 4, 6, 8 contr.treatment <NA> mean(4)
#> 4 twolevel 2 a, b contr.treatment a mean(a)
Remember that set_contrasts
will automatically coerce
dataframe columns into factors when specifying a contrast, but
glimpse_contrasts
does not because it does not
modify the provided dataframe.
There is an additional operator for the formulas that only applies to
polynomial contrasts. For background, polynomial contrasts encode
polynomial “trends” across the levels of a factor. So, testing for a
linear-like trend, a quadratic-like trend, etc. One thing you
can do, though I don’t necessarily recommend it is
removing higher-order trends. For instance, if you have 8 levels but
don’t want to bother with polynomials over degree 3 (even though you’ll
get up to degree 7 for “free”). In this situation you can use the
-
operator:
varname ~ code_by + reference * intercept - low:high | labels
enlist_contrasts(mdl_data, carb ~ contr.poly)
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
#> $carb
#> .L .Q .C ^4 ^5
#> 1 -0.5976143 0.5455447 -0.3726780 0.1889822 -0.06299408
#> 2 -0.3585686 -0.1091089 0.5217492 -0.5669467 0.31497039
#> 3 -0.1195229 -0.4364358 0.2981424 0.3779645 -0.62994079
#> 4 0.1195229 -0.4364358 -0.2981424 0.3779645 0.62994079
#> 6 0.3585686 -0.1091089 -0.5217492 -0.5669467 -0.31497039
#> 8 0.5976143 0.5455447 0.3726780 0.1889822 0.06299408
enlist_contrasts(mdl_data, carb ~ contr.poly - 3:5)
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
#> $carb
#> .L .Q
#> 1 -0.5976143 0.5455447
#> 2 -0.3585686 -0.1091089
#> 3 -0.1195229 -0.4364358
#> 4 0.1195229 -0.4364358
#> 6 0.3585686 -0.1091089
#> 8 0.5976143 0.5455447
Note that you can ONLY use this with enlist_contrasts
and glimpse_contrasts
. This is because if you remove
columns from a contrast matrix, R will fill them back with something
else.
mdl_data14 <- set_contrasts(mdl_data, carb ~ contr.sum)
#> Expect contr.treatment or contr.poly for unset factors: cyl gear twolevel
contrasts(mdl_data14$carb)
#> 2 3 4 6 8
#> 1 -1 -1 -1 -1 -1
#> 2 1 0 0 0 0
#> 3 0 1 0 0 0
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
contrasts(mdl_data14$carb) <- contrasts(mdl_data14$carb)[, 1:2]
contrasts(mdl_data14$carb)
#> 2 3
#> 1 -1 -1 -0.23570226 -0.23570226 -0.23570226
#> 2 1 0 -0.23570226 -0.23570226 -0.23570226
#> 3 0 1 -0.23570226 -0.23570226 -0.23570226
#> 4 0 0 0.90236893 -0.09763107 -0.09763107
#> 6 0 0 -0.09763107 0.90236893 -0.09763107
#> 8 0 0 -0.09763107 -0.09763107 0.90236893
What do these values correspond to? If we check out the hypothesis matrix, we can see that it seems like it’s trying to encode 0 but with some floating point error:
MASS::fractions(
contrastable:::.convert_matrix(
contrasts(mdl_data14$carb)
)
)
#> [,1] [,2] [,3] [,4]
#> [1,] 1/6 -1/3 -1/3 -1293633/5488420
#> [2,] 1/6 2/3 -1/3 -1293633/5488420
#> [3,] 1/6 -1/3 2/3 -1293633/5488420
#> [4,] 1/6 0 0 11956585/13250218
#> [5,] 1/6 0 0 -1293633/13250218
#> [6,] 1/6 0 0 -1293633/13250218
#> [,5] [,6]
#> [1,] -1293633/5488420 -1293633/5488420
#> [2,] -1293633/5488420 -1293633/5488420
#> [3,] -1293633/5488420 -1293633/5488420
#> [4,] -1293633/13250218 -1293633/13250218
#> [5,] 11956585/13250218 -1293633/13250218
#> [6,] -1293633/13250218 11956585/13250218
This is why I don’t recommend actually using the -
operator. If you use something like lm
to fit functions,
you can use the output from enlist_contrasts
as the
argument to contrasts
. Although, I’m pretty sure the model
matrix will just add in these values anyways. If you try to use the
-
operator with set_contrasts
you’ll get a
warning, and the -
operator will be ignored:
This is somewhat related to the -
operator described
above, but has more uses. When considering a factor with 3 levels,
you’ll end up with two coefficients in your model. In other words, a
single factor is “decomposed” behind the scenes into multiple numeric
predictors for the model matrix. Sometimes it can be helpful to work
directly with these decomposed predictors. For example, interactions in
GAM models with mgcv
can often be a pain to work with, and
sometimes it’s easier to just group the interaction of two predictors
into a series of individual predictors. However, doing the matrix
multiplication one at a time (or trying to conceptualize how the
matrices fit together) can be difficult, especially when R’s model
matrix functionality can do it for us. decompose_contrasts
provides an interface to do such decomposition.
mdl_data16 <-
mdl_data |>
set_contrasts(cyl ~ helmert_code,
gear ~ helmert_code) |>
decompose_contrasts(~ cyl * gear)
#> Expect contr.treatment or contr.poly for unset factors: carb twolevel
# Look at the decomposed contrast columns
mdl_data16 |>
dplyr::select(matches("^cyl|gear")) |>
head()
#> cyl gear cyl<6 cyl<8 gear<4 gear<5 cyl<6:gear<4 cyl<8:gear<4
#> 1 6 4 0.5 -0.3333333 0.5 -0.3333333 0.25 -0.1666667
#> 2 6 4 0.5 -0.3333333 0.5 -0.3333333 0.25 -0.1666667
#> 3 4 4 -0.5 -0.3333333 0.5 -0.3333333 -0.25 -0.1666667
#> 4 6 3 0.5 -0.3333333 -0.5 -0.3333333 -0.25 0.1666667
#> 5 8 3 0.0 0.6666667 -0.5 -0.3333333 0.00 -0.3333333
#> 6 6 3 0.5 -0.3333333 -0.5 -0.3333333 -0.25 0.1666667
#> cyl<6:gear<5 cyl<8:gear<5
#> 1 -0.1666667 0.1111111
#> 2 -0.1666667 0.1111111
#> 3 0.1666667 0.1111111
#> 4 -0.1666667 0.1111111
#> 5 0.0000000 -0.2222222
#> 6 -0.1666667 0.1111111
The column names take the name from the labels, so these may not
always be easy to work with when there are special characters. You can
wrangle these or use something like the {janitor}
package
as needed.
Here’s a comparison of using the cyl
predictor normally
(which gives us two coefficients), and specifying the comparisons
separately after decomposing the contrasts:
coef(lm(mpg ~ cyl, data = mdl_data16))
#> (Intercept) cyl<6 cyl<8
#> 20.502165 -6.920779 -8.103247
coef(lm(mpg ~ `cyl<6` + `cyl<8`, data = mdl_data16))
#> (Intercept) `cyl<6` `cyl<8`
#> 20.502165 -6.920779 -8.103247
coef(lm(mpg ~ cyl * gear, data = mdl_data16))
#> (Intercept) cyl<6 cyl<8 gear<4 gear<5 cyl<6:gear<4
#> 19.7875000 -5.8083333 -8.5500000 0.7291667 1.9687500 -5.4250000
#> cyl<8:gear<4 cyl<6:gear<5 cyl<8:gear<5
#> -5.9500000 -4.0375000 NA
coef(lm(mpg ~
`cyl<6` + `cyl<8` +
`gear<4` + `gear<5` +
`cyl<6:gear<4` +
`cyl<8:gear<4` +
`cyl<6:gear<5` +
`cyl<8:gear<5`,
data = mdl_data16))
#> (Intercept) `cyl<6` `cyl<8` `gear<4` `gear<5`
#> 19.7875000 -5.8083333 -8.5500000 0.7291667 1.9687500
#> `cyl<6:gear<4` `cyl<8:gear<4` `cyl<6:gear<5` `cyl<8:gear<5`
#> -5.4250000 -5.9500000 -4.0375000 NA
If we really wanted to, we could use just one of the comparisons, but note that this may give misleading results:
coef(lm(mpg ~ `cyl<6` + `cyl<8`, data = mdl_data16))
#> (Intercept) `cyl<6` `cyl<8`
#> 20.502165 -6.920779 -8.103247
coef(lm(mpg ~ `cyl<6`, data = mdl_data16)) # not the same estimate as the above
#> (Intercept) `cyl<6`
#> 19.556786 -8.541429
This function can be especially valuable for pedagogical purposes, as it shows how the qualitative labels in the factor data is converted into numeric values for the model to work with.
There are two general patterns you’ll take in analyses with this package:
Here’s a general usage pattern when you don’t want to use
glimpse_contrasts
.
raw_data <- mtcars # load raw data from a csv or something here
# wrangle data for your final model
final_data <-
mtcars |>
# mutate(# ... some data wrangling transformations ..) |>
set_contrasts(carb ~ sum_code) # set contrasts at the very end
#> Converting to factors: carb
mdl <- lm(mpg ~ carb, data = final_data) # run model with contrasts set
Here’s a usage pattern if you wanted to, say, publish the contrast matrices or report the glimpse table in a publication or preregistration:
raw_data <- mtcars # load raw data from a csv or something here
# specify contrasts up front
my_contrasts <- list(carb ~ sum_code,
cyl ~ scaled_sum_code,
gear ~ sum_code)
# wrangle data for your final model
final_data <-
mtcars |>
# mutate(# ... some data wrangling transformations ..) |>
set_contrasts(my_contrasts) # set contrasts at the very end
#> Converting to factors: carb cyl gear
# Show the matrices we're using
enlist_contrasts(final_data, my_contrasts)
#> $carb
#> 2 3 4 6 8
#> 1 -1 -1 -1 -1 -1
#> 2 1 0 0 0 0
#> 3 0 1 0 0 0
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
#>
#> $cyl
#> 6 8
#> 4 -0.3333333 -0.3333333
#> 6 0.6666667 -0.3333333
#> 8 -0.3333333 0.6666667
#>
#> $gear
#> 4 5
#> 3 -1 -1
#> 4 1 0
#> 5 0 1
# Show a summary
glimpse_contrasts(final_data, my_contrasts)
#> factor n level_names scheme reference intercept
#> 1 carb 6 1, 2, 3,.... sum_code <NA> grand mean
#> 2 cyl 3 4, 6, 8 scaled_sum_code <NA> grand mean
#> 3 gear 3 3, 4, 5 sum_code <NA> grand mean
# Fit the model with contrasts set
mdl <- lm(mpg ~ carb, data = final_data)
If you want to show fractions instead of decimals, use
MASS::fractions
with each element of the list of
contrasts:
enlist_contrasts(final_data, my_contrasts) |>
lapply(MASS::fractions)
#> $carb
#> 2 3 4 6 8
#> 1 -1 -1 -1 -1 -1
#> 2 1 0 0 0 0
#> 3 0 1 0 0 0
#> 4 0 0 1 0 0
#> 6 0 0 0 1 0
#> 8 0 0 0 0 1
#>
#> $cyl
#> 6 8
#> 4 -1/3 -1/3
#> 6 2/3 -1/3
#> 8 -1/3 2/3
#>
#> $gear
#> 4 5
#> 3 -1 -1
#> 4 1 0
#> 5 0 1
If you use the targets
package, you can set up the list
of contrasts as its own target, then pass that to other targets so that
your analyses will be rerun whenever you change the contrasts (though
this shouldn’t happen frequently).
I discussed the main functions in this package and the special syntax that is implemented to set contrasts. If you want additional examples, see my blog posts below:
If you need additional information regarding the various warnings and
messages this package throws, you can check out the
warnings
vignette in this package.
When citing the package in a paper, ideally three things are achieved:
In a paper with multiple analyses, these don’t necessarily need to all be mentioned on each analysis, especially when there are commonalities between them.
Bad on first mention: “Condition and group are sum coded.” (this can be fine if “sum code” is defined previously)
Good: “Condition is coded using the sum_code()
function
from the contrastable package (Sostarics 2024), using A as the reference
level. Group is similarly sum coded, with X as the reference level.”
Also good: “For all of our analyses, we use the contrastable package (Sostarics, 2024) to set the contrasts for our categorical variables. Condition and group are sum coded (reference level -1, comparisons +1) with A and X as the reference levels, respectively.” The point here is to disambiguate what is meant by “sum code”, which has inconsistent usage in the literature.
Here’s a paragraph example describing two models:
A bit repetitive: “In the model for Experiment 1, Condition is
treatment coded using the treatment_code()
function from
the contrastable package (Sostarics, 2024), with A as the reference, and
Group is scaled sum coded using the scaled_sum_code()
function from the contrastable package, with X as the reference. In the
model for Experiment 2, Condition is treatment coded with the
treatment_code()
function (reference=A) and Group is scaled
sum coded with scaled_sum_code()
(reference=X), while the
additional Context predictor is scaled sum coded using the
scaled_sum_code()
function (reference=NoContext).”
Rewritten: “We use the treatment_code() and scaled_sum_code() functions from the contrastable package (Sostarics, 2024) when setting the contrasts for our categorical variables. In the model for Experiment 1, Condition is treatment coded (reference=A) and Group is scaled sum coded (reference=X). For Experiment 2, the additional Context predictor is scaled sum coded (reference=NoContext); as in Exp. 1, Condition is treatment coded (reference=A) and Group is sum coded (reference=X).”
Other examples:
scaled_sum_code()
function from the contrastable package
(Sostarics 2024).helmert_code()
and scaled_sum_code()
functions
from the contrastable R package (Sostarics 2024)set_contrasts()
and sum_code()
functions from the contrastable package (Sostarics 2024) to sum code
(+1/-1) our variablesI also recommend writing out, potentially in a footnote, what the comparisons are.
Good: “We use the contrastable package’s sum_code()
function (+1/-1, Sostarics 2024) for all categorical variables.”
Better: “We use the contrastable package’s sum_code()
function (+1/-1, Sostarics 2024) for all categorical variables. This
contrast scheme encodes differences between each comparison level and
the grand mean.”
Technically, due to degrees of freedom, we’d compare only 2 of the 3 levels to the average.↩︎
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.