The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

conversim logo

The conversim package provides tools for analyzing similarity between conversations, with a focus on calculating topic, lexical, semantic, stylistic, and sentiment similarities. This package can handle comparisons between two long speeches, a sequence of conversations in one or multiple dyads. Some utility functions are also provided that allow researchers to explore and visualize conversational patterns.

Installation

You can install conversim on CRAN:

install.packages("conversim")

Load the package and example datasets

library(conversim)
load(system.file("extdata", "dyad_example_data.Rdata", package = "conversim"))
load(system.file("extdata", "speeches_data.RData", package = "conversim"))

Example usage

Below are examples of how to use the main functions in the conversim package.

Analyzing Similarities between Two Long Speeches

# preprocess_text function
preprocessed_A <- preprocess_text(speeches_data$text[1])
preprocessed_B <- preprocess_text(speeches_data$text[2])

# topic_similarity function
lda_similarity <- topic_similarity(speeches_data$text[1], speeches_data$text[2], method = "lda", num_topics = 5)
lsa_similarity <- topic_similarity(speeches_data$text[1], speeches_data$text[2], method = "lsa", num_topics = 5)

# lexical_similarity function
lex_similarity <- lexical_similarity(preprocessed_A, preprocessed_B)

# semantic_similarity function
tfidf_similarity <- semantic_similarity(speeches_data$text[1], speeches_data$text[2], method = "tfidf")
word2vec_similarity <- semantic_similarity(speeches_data$text[1], speeches_data$text[2], method = "word2vec")

# structural_similarity function
struct_similarity <- structural_similarity(strsplit(speeches_data$text[1], "\n")[[1]], strsplit(speeches_data$text[2], "\n")[[1]])

# stylistic_similarity function
style_similarity <- stylistic_similarity(speeches_data$text[1], speeches_data$text[2])

# sentiment_similarity function
sent_similarity <- sentiment_similarity(speeches_data$text[1], speeches_data$text[2])

Analyzing Similarities over a Sequence of Conversations in a Single Dyad

# Preprocess the conversations from multiple dyads
preprocessed_data <- preprocess_dyads(dyad_example_data)

# Select one dyad for comparison
conversation <- preprocessed_data %>% filter(dyad_id == 1) %>% select(speaker_id, processed_text)

# Calculate topic similarity sequence
topic_sim <- topic_sim_seq(conversation, method = "lda", num_topics = 2, window_size = 3)

## Lexical Similarity Sequence
lexical_sim <- lex_sim_seq(conversation, window_size = 3)

## Semantic Similarity Sequence
semantic_sim <- sem_sim_seq(conversation, method = "tfidf", window_size = 3)

## Stylistic Similarity Sequence
stylistic_sim <- style_sim_seq(conversation, window_size = 3)

## Sentiment Similarity Sequence
sentiment_sim <- sent_sim_seq(conversation, window_size = 3)

Analyzing Similarities over a Sequence of Conversations across Multiple Dyads

# Preprocess the conversations from multiple dyads
preprocessed_data <- preprocess_dyads(dyad_example_data)

# Calculate topic similarity for multiple dyads
topic_sim_results <- topic_sim_dyads(preprocessed_data, method = "lda", num_topics = 3, window_size = 2)

# Calculate lexical similarity for multiple dyads
lexical_sim_results <- lexical_sim_dyads(preprocessed_data, window_size = 2)

# Calculate semantic similarity for multiple dyads
semantic_sim_results <- semantic_sim_dyads(preprocessed_data, method = "tfidf", window_size = 2)

# Calculate structural similarity for multiple dyads
structural_sim_results <- structural_sim_dyads(preprocessed_data)

# Calculate stylistic similarity for multiple dyads
stylistic_sim_results <- stylistic_sim_dyads(preprocessed_data)

# Calculate sentiment similarity for multiple dyads
sentiment_sim_results <- sentiment_sim_dyads(preprocessed_data)

# Calculate participant similarity for multiple dyads
participant_sim_results <- participant_sim_dyads(preprocessed_data)

# Calculate timing similarity for multiple dyads
timing_sim_results <- timing_sim_dyads(preprocessed_data)

For more tutorials, please visit liu-chao.site/conversim

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.