The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Quick start guide

Dax Kellie

2025-03-24

corella is a tool for standardising data in R to use the Darwin Core Standard. Darwin Core Standard is the primary data standard for species occurrence data—records of organisms observed in a location and time—in the Atlas of Living Australia (ALA), other Living Atlases and the Global Biodiversity Information Facility (GBIF). The standard allows the ability to compile data from a variety of sources, improving the ease to share, use and reuse data.

The main tasks to standardise data with Darwin Core Standard are:

  1. Ensure columns use valid Darwin Core terms as column names
  2. Include all required information (e.g. scientific name, unique observation ID, valid date)
  3. Ensure columns contain valid data

This process can be daunting. corella is designed to reduce confusion of how to get started, and help determine which Darwin Core terms might match your column names.

Install

To install from CRAN:

install.packages("corella")

To install the development version from GitHub:

# install.packages("devtools")
devtools::install_github("AtlasOfLivingAustralia/corella")

To load the package:

library(corella)

Rename, add or edit columns

Here is a minimal example dataset of cockatoo observations. In our dataframe df there are columns that contain information that we would like to standardise using Darwin Core.

library(tibble)
library(lubridate)

df <- tibble(
  latitude = c(-35.310, "-35.273"), # deliberate error for demonstration purposes
  longitude = c(149.125, 149.133),
  date = c("14-01-2023", "15-01-2023"),
  time = c("10:23:00", "11:25:00"),
  month = c("January", "February"),
  day = c(100, 101),
  species = c("Callocephalon fimbriatum", "Eolophus roseicapilla"),
  n = c(2, 3),
  crs = c("WGS84", "WGS8d"),
  country = c("Australia", "Denmark"),
  continent = c("Oceania", "Europe")
  )

df
#> # A tibble: 2 × 11
#>   latitude longitude date       time     month   day species     n crs   country
#>   <chr>        <dbl> <chr>      <chr>    <chr> <dbl> <chr>   <dbl> <chr> <chr>  
#> 1 -35.31        149. 14-01-2023 10:23:00 Janu…   100 Calloc…     2 WGS84 Austra…
#> 2 -35.273       149. 15-01-2023 11:25:00 Febr…   101 Eoloph…     3 WGS8d Denmark
#> # ℹ 1 more variable: continent <chr>

We can standardise our data with set_ functions. The set_ functions possess a suffix name to identify what type of data they are used to standardise (e.g. set_coordinates, set_datetime), and arguments in set_ functions are valid Darwin Core terms (ie column names). By grouping Darwin Core terms based on their data type, corella makes it easier for users to find relevant Darwin Core terms to use as column names (one of the most onerous parts of Darwin Core for new users).

Let’s specify that the scientific name (i.e. genus + species name) in our data is in the species column by using set_scientific_name(). You’ll notice 2 things happen:

  1. The species column in our dataframe is renamed to scientificName
  2. set_scientific_name() runs a check on our species column to make sure it is formatted correctly
df |>
  set_scientific_name(scientificName = species)
#> ⠙ Checking 1 column: scientificName⠹ Checking 1 column: scientificName✔ Checking 1 column: scientificName [355ms]
#> # A tibble: 2 × 11
#>   latitude longitude date       time   month   day     n crs   country continent
#>   <chr>        <dbl> <chr>      <chr>  <chr> <dbl> <dbl> <chr> <chr>   <chr>    
#> 1 -35.31        149. 14-01-2023 10:23… Janu…   100     2 WGS84 Austra… Oceania  
#> 2 -35.273       149. 15-01-2023 11:25… Febr…   101     3 WGS8d Denmark Europe   
#> # ℹ 1 more variable: scientificName <chr>

What happens when we add a column with an error in it? The latitude column in df is a class character column, instead of a numeric column as it should be. When we try to update the column name using set_coordinates(), an error tells us the class is wrong.

df |>
  set_scientific_name(scientificName = species) |>
  set_coordinates(decimalLongitude = longitude,
                  decimalLatitude = latitude)
#> ⠙ Checking 1 column: scientificName⠹ Checking 1 column: scientificName✔ Checking 1 column: scientificName [322ms]
#> ⠙ Checking 2 columns: decimalLatitude and decimalLongitude⠹ Checking 2 columns: decimalLatitude and decimalLongitude⠸ Checking 2 columns: decimalLatitude and decimalLongitude✔ Checking 2 columns: decimalLatitude and decimalLongitude [685ms]
#> Error in `check_decimalLatitude()`:
#> ! decimalLatitude must be a numeric vector, not character.

Fix or update columns

To change, edit or fix a column, users can edit the column within the set_ function.

Each set_ function is essentially a specialised dplyr::mutate(), meaning users can edit columns using the same processes they would when using dplyr::mutate(). We can fix the latitude column so that it is class numeric within the set_coordinates() function.

df_darwincore <- df |>
  set_scientific_name(scientificName = species) |>
  set_coordinates(decimalLongitude = longitude,
                  decimalLatitude = as.numeric(latitude))
#> ⠙ Checking 1 column: scientificName⠹ Checking 1 column: scientificName✔ Checking 1 column: scientificName [340ms]
#> ⠙ Checking 2 columns: decimalLatitude and decimalLongitude⠹ Checking 2 columns: decimalLatitude and decimalLongitude⠸ Checking 2 columns: decimalLatitude and decimalLongitude✔ Checking 2 columns: decimalLatitude and decimalLongitude [671ms]

df_darwincore
#> # A tibble: 2 × 11
#>   date       time     month     day     n crs   country continent scientificName
#>   <chr>      <chr>    <chr>   <dbl> <dbl> <chr> <chr>   <chr>     <chr>         
#> 1 14-01-2023 10:23:00 January   100     2 WGS84 Austra… Oceania   Callocephalon…
#> 2 15-01-2023 11:25:00 Februa…   101     3 WGS8d Denmark Europe    Eolophus rose…
#> # ℹ 2 more variables: decimalLatitude <dbl>, decimalLongitude <dbl>

Auto-detect columns

corella is also able to detect when a column exists in a data frame that already has a valid Darwin Core term as a column name. For example, df contains columns with locality information. We can add set_locality() to our pipe to identify these columns, but because several columns already have valid Darwin Core terms as column names (country and continent), set_locality() will detect these valid Darwin Core columns in df and check them automatically.

df |>
  set_scientific_name(scientificName = species) |>
  set_coordinates(decimalLongitude = longitude,
                  decimalLatitude = as.numeric(latitude)) |>
  set_locality()
#> ⠙ Checking 1 column: scientificName⠹ Checking 1 column: scientificName✔ Checking 1 column: scientificName [321ms]
#> ⠙ Checking 2 columns: decimalLatitude and decimalLongitude⠹ Checking 2 columns: decimalLatitude and decimalLongitude⠸ Checking 2 columns: decimalLatitude and decimalLongitude✔ Checking 2 columns: decimalLatitude and decimalLongitude [665ms]
#> ⠙ Checking 2 columns: country and continent⠹ Checking 2 columns: country and continent⠸ Checking 2 columns: country and continent✔ Checking 2 columns: country and continent [682ms]
#> # A tibble: 2 × 11
#>   date       time     month     day     n crs   country continent scientificName
#>   <chr>      <chr>    <chr>   <dbl> <dbl> <chr> <chr>   <chr>     <chr>         
#> 1 14-01-2023 10:23:00 January   100     2 WGS84 Austra… Oceania   Callocephalon…
#> 2 15-01-2023 11:25:00 Februa…   101     3 WGS8d Denmark Europe    Eolophus rose…
#> # ℹ 2 more variables: decimalLatitude <dbl>, decimalLongitude <dbl>

df_darwincore
#> # A tibble: 2 × 11
#>   date       time     month     day     n crs   country continent scientificName
#>   <chr>      <chr>    <chr>   <dbl> <dbl> <chr> <chr>   <chr>     <chr>         
#> 1 14-01-2023 10:23:00 January   100     2 WGS84 Austra… Oceania   Callocephalon…
#> 2 15-01-2023 11:25:00 Februa…   101     3 WGS8d Denmark Europe    Eolophus rose…
#> # ℹ 2 more variables: decimalLatitude <dbl>, decimalLongitude <dbl>

corella’s auto-detection prevents users from needing to specify every single column, reducing the amount of typing for users when they have already have valid Darwin Core column names!

Suggest a workflow

Unsure where to start? Confused about the minimum requirements to share your data? Using suggest_workflow() is the easiest way to get started in corella.

suggest_workflow() provides a high level summary designed to show:

  1. Which column names match valid Darwin Core terms
  2. The minimum requirements for data in a Darwin Core Archive (i.e. a completed data resource in Darwin Core standard).
  3. A suggested workflow to help you add the minimum required columns
  4. Additional functions that could be added to a piped workflow (based the provided dataset’s matching Darwin Core column names)

The intention of suggest_workflow() is to provide a general help function whenever users feel uncertain about what to do next. Let’s see what the output says about our original dataframe df.

df |>
  suggest_workflow()
#> 
#> ── Matching Darwin Core terms ──────────────────────────────────────────────────
#> Matched 4 of 11 column names to DwC terms:
#> ✔ Matched: continent, country, day, month
#> ✖ Unmatched: crs, date, latitude, longitude, n, species, time
#> 
#> ── Minimum required Darwin Core terms ──────────────────────────────────────────
#> 
#>   Type                      Matched term(s)  Missing term(s)                                                                
#> ✖ Identifier (at least one) -                occurrenceID, catalogNumber, recordNumber                                       
#> ✖ Record type               -                basisOfRecord                                                                   
#> ✖ Scientific name           -                scientificName                                                                  
#> ✖ Location                  -                decimalLatitude, decimalLongitude, geodeticDatum, coordinateUncertaintyInMeters 
#> ✖ Date/Time                 -                eventDate
#> 
#> ── Suggested workflow ──────────────────────────────────────────────────────────
#> 
#> To make your data Darwin Core compliant, use the following workflow:
#> df |>
#>   set_occurrences() |>
#>   set_datetime() |>
#>   set_coordinates() |>
#>   set_scientific_name()
#> 
#> ── Additional functions
#> Based on your matched terms, you can also add to your pipe:
#> • `set_datetime()` and `set_locality()`
#> ℹ See all `set_` functions at
#>   http://corella.ala.org.au/reference/index.html#add-rename-or-edit-columns-to-match-darwin-core-terms

suggest_workflow() will update the suggested function pipe to only suggest functions that are necessary to standardise your data correctly.

For example, after using one of the suggested functions set_occurrences(), if we run suggest_workflow() again, the output message no longer suggests set_occurrences().

df_edited <- df |>
  set_occurrences(
    occurrenceID = seq_len(nrow(df)),
    basisOfRecord = "humanObservation"
    )
df_edited |>
  suggest_workflow()
#> 
#> ── Matching Darwin Core terms ──────────────────────────────────────────────────
#> Matched 6 of 13 column names to DwC terms:
#> ✔ Matched: basisOfRecord, continent, country, day, month, occurrenceID
#> ✖ Unmatched: crs, date, latitude, longitude, n, species, time
#> 
#> ── Minimum required Darwin Core terms ──────────────────────────────────────────
#> 
#>   Type                      Matched term(s)  Missing term(s)                                                                
#> ✔ Identifier (at least one) occurrenceID     -                                                                               
#> ✔ Record type               basisOfRecord    -                                                                               
#> ✖ Scientific name           -                scientificName                                                                  
#> ✖ Location                  -                decimalLatitude, decimalLongitude, geodeticDatum, coordinateUncertaintyInMeters 
#> ✖ Date/Time                 -                eventDate
#> 
#> ── Suggested workflow ──────────────────────────────────────────────────────────
#> 
#> To make your data Darwin Core compliant, use the following workflow:
#> df |>
#>   set_datetime() |>
#>   set_coordinates() |>
#>   set_scientific_name()
#> 
#> ── Additional functions
#> Based on your matched terms, you can also add to your pipe:
#> • `set_datetime()` and `set_locality()`
#> ℹ See all `set_` functions at
#>   http://corella.ala.org.au/reference/index.html#add-rename-or-edit-columns-to-match-darwin-core-terms

Test your data

If your dataset already uses valid Darwin Core terms as column names, instead of working through each set_ function, you might wish to run tests on your entire dataset. To run checks on your data like a test suite, use check_dataset(). Much like devtools::test() or devtools::check(), check_dataset() runs the relevant check on each matching Darwin Core column and returns a summary of the results, along with any error messages returned by those checks.

df <- tibble(
  latitude = c(-35.310, "-35.273"), # deliberate error for demonstration purposes
  longitude = c(149.125, 149.133),
  date = c("14-01-2023", "15-01-2023"),
  individualCount = c(0, 2),
  species = c("Callocephalon fimbriatum", "Eolophus roseicapilla"),
  country = c("AU", "AU"),
  occurrenceStatus = c("present", "present")
  )

df |>
  check_dataset()
#> ℹ Testing data
#> ✔ | E P | Column
#> ⠙ | 0 individualCount
#> ✔ | 1 ✖ | individualCount  [36ms]
#> ⠙ | 0  country         ✔ | 1 ✖ | country          [36ms]
#> ══ Results ═════════════════════════════════════════════════════════════════════
#> 
#> [ Errors: 2 | Pass: 0 ]
#> ℹ Checking Darwin Core compliance
#> ✖ Data does not meet minimum Darwin Core column requirements
#> ℹ Use `suggest_workflow()` to see more information.
#> ── Error in term ───────────────────────────────────────────────────────────────
#> 
#> individualCount values do not match occurrenceStatus.
#> ✖ Found 1 row where individualCount = 0 but occurrenceStatus = "present".
#> Unexpected value in country.
#> ✖ Invalid value: "AU"

The goal of check_dataset() is to make running many checks more efficient, and to cater to users who prefer a test-suite-like workflow.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.