The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The goal of curstatCI is to obtain confidence intervals for the distribution function of a random variable based on current status data. In the current status model, the variable of interest X with distribution function F0 is not observed directly. A censoring variable T is observed instead together with the indicator Δ = (X ≤ T). curstatCI provides functions to estimate the distribution function F0 and to construct pointswise confidence intervals around F0(t) based on an observed sample (T1, Δ1),…,(Tn, Δn) of size n from the observable random vector (T, Δ).
You can install curstatCI from CRAN with:
# install.packages("curstatCI")
The package curstatCI requires the library Rcpp. To use the functions available in curstatCI load:
load(Rcpp)
load(curstatCI)
You can install curstatCI from github with:
# install.packages("devtools")
::install_github("kimhendrickx/curstatCI") devtools
This is a basic example which shows you how to obtain the confidence intervals for the distribution function of the time to infection for the Rubella data set. More information on the data and usage of the package can be found in the vignette “curstatCI”:
library(Rcpp)
library(curstatCI)
set.seed(1)
data(rubella)
<-1:80
grid <-ComputeBW(data=rubella, x=grid)
bw #> The computations took 1.256 seconds
<-ComputeConfIntervals(data=rubella,x=grid,alpha=0.05, bw = bw)
out#> The program produces the Studentized nonparametric bootstrap confidence intervals for the cdf, using the SMLE.
#>
#> Number of unique observations: 225
#> Sample size n = 230
#> Number of Studentized Intervals = 80
#> Number of Non-Studentized Intervals = 0
#> The computations took 0.414 seconds
$MLE
out#> [,1] [,2]
#> [1,] 0.0000 0.0000000
#> [2,] 0.9452 0.2000000
#> [3,] 1.2301 0.4857143
#> [4,] 5.6411 0.5000000
#> [5,] 9.4603 0.5714286
#> [6,] 12.4548 0.8571429
#> [7,] 15.4466 0.8666667
#> [8,] 20.8000 0.8750000
#> [9,] 23.2219 0.9285714
#> [10,] 25.2932 0.9401709
#> [11,] 77.8027 1.0000000
<- out$SMLE
smle <-out$CI[,1]
left<-out$CI[,2]
right
<-cbind(smle, left, right)
ConfInthead(ConfInt)
#> smle left right
#> [1,] 0.05205647 0.04645370 0.05684488
#> [2,] 0.10387679 0.09062863 0.11518718
#> [3,] 0.15522742 0.13450756 0.17291065
#> [4,] 0.20587997 0.17795836 0.22970949
#> [5,] 0.25561365 0.22085116 0.28528225
#> [6,] 0.30421750 0.26290425 0.33934792
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.