The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
When running cutpointr
, a ROC curve is by default returned in the column roc_curve
. This ROC curve can be plotted using plot_roc
. Alternatively, if only the ROC curve is desired and no cutpoint needs to be calculated, the ROC curve can be created using roc()
and plotted using plot_cutpointr
. The roc
function, unlike cutpointr
, does not determine direction
, pos_class
or neg_class
automatically.
library(cutpointr)
roc_curve <- roc(data = suicide, x = dsi, class = suicide,
pos_class = "yes", neg_class = "no", direction = ">=")
auc(roc_curve)
## [1] 0.9237791
## # A tibble: 6 x 9
## x.sorted tp fp tn fn tpr tnr fpr fnr
## <dbl> <dbl> <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 Inf 0 0 496 36 0 1 0 1
## 2 11 1 0 496 35 0.0278 1 0 0.972
## 3 10 2 1 495 34 0.0556 0.998 0.00202 0.944
## 4 9 3 1 495 33 0.0833 0.998 0.00202 0.917
## 5 8 4 1 495 32 0.111 0.998 0.00202 0.889
## 6 7 7 1 495 29 0.194 0.998 0.00202 0.806
Alternatively, we can map the standard evaluation version cutpointr
to the column names. If direction
and / or pos_class
and neg_class
are unspecified, these parameters will automatically be determined by cutpointr so that the AUC values for all variables will be \(> 0.5\).
We could do this manually, e.g. using purrr::map
, but to make this task more convenient multi_cutpointr
can be used to achieve the same result. It maps multiple predictor columns to cutpointr
, by default all numeric columns except for the class column.
mcp <- multi_cutpointr(suicide, class = suicide, pos_class = "yes",
use_midpoints = TRUE, silent = TRUE)
summary(mcp)
## Method: maximize_metric
## Predictor: age, dsi
## Outcome: suicide
##
## Predictor: age
## --------------------------------------------------------------------------------
## direction AUC n n_pos n_neg
## <= 0.5257 532 36 496
##
## optimal_cutpoint sum_sens_spec acc sensitivity specificity tp fn fp tn
## 55.5 1.1154 0.1992 0.9722 0.1431 35 1 425 71
##
## Predictor summary:
## Data Min. 5% 1st Qu. Median Mean 3rd Qu. 95% Max. SD NAs
## Overall 18 19 24 28.0 34.1259 41.25 65.00 83 15.0542 0
## no 18 19 24 28.0 34.2218 41.25 65.50 83 15.1857 0
## yes 18 18 22 27.5 32.8056 41.25 54.25 69 13.2273 0
##
## Predictor: dsi
## --------------------------------------------------------------------------------
## direction AUC n n_pos n_neg
## >= 0.9238 532 36 496
##
## optimal_cutpoint sum_sens_spec acc sensitivity specificity tp fn fp tn
## 1.5 1.7518 0.8647 0.8889 0.8629 32 4 68 428
##
## Predictor summary:
## Data Min. 5% 1st Qu. Median Mean 3rd Qu. 95% Max. SD NAs
## Overall 0 0.00 0 0 0.9211 1 5.00 11 1.8527 0
## no 0 0.00 0 0 0.6331 0 4.00 10 1.4122 0
## yes 0 0.75 4 5 4.8889 6 9.25 11 2.5498 0
data
, roc_curve
, and boot
The object returned by cutpointr
is of the classes cutpointr
, tbl_df
, tbl
, and data.frame
. Thus, it can be handled like a usual data frame. The columns data
, roc_curve
, and boot
consist of nested data frames, which means that these are list columns whose elements are data frames. They can either be accessed using [
or by using functions from the tidyverse. If subgroups were given, the output contains one row per subgroup and the function that accesses the data should be mapped to every row or the data should be grouped by subgroup.
library(dplyr)
library(tidyr)
opt_cut_b_g |>
group_by(subgroup) |>
select(subgroup, boot) |>
unnest(cols = boot) |>
summarise(sd_oc_boot = sd(optimal_cutpoint),
m_oc_boot = mean(optimal_cutpoint),
m_acc_oob = mean(acc_oob))
## # A tibble: 2 x 4
## subgroup sd_oc_boot m_oc_boot m_acc_oob
## <chr> <dbl> <dbl> <dbl>
## 1 female 0.766 2.17 0.880
## 2 male 1.51 2.92 0.806
By default, the output of cutpointr
includes the optimized metric and several other metrics. The add_metric
function adds further metrics. Here, we’re adding the negative predictive value (NPV) and the positive predictive value (PPV) at the optimal cutpoint per subgroup:
cutpointr(suicide, dsi, suicide, gender, metric = youden, silent = TRUE) |>
add_metric(list(ppv, npv)) |>
select(subgroup, optimal_cutpoint, youden, ppv, npv)
## # A tibble: 2 x 5
## subgroup optimal_cutpoint youden ppv npv
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 female 2 0.808118 0.367647 0.993827
## 2 male 3 0.625106 0.259259 0.982301
In the same fashion, additional metric columns can be added to a roc_cutpointr
object:
roc(data = suicide, x = dsi, class = suicide, pos_class = "yes",
neg_class = "no", direction = ">=") |>
add_metric(list(cohens_kappa, F1_score)) |>
select(x.sorted, tp, fp, tn, fn, cohens_kappa, F1_score) |>
head()
## # A tibble: 6 x 7
## x.sorted tp fp tn fn cohens_kappa F1_score
## <dbl> <dbl> <dbl> <int> <int> <dbl> <dbl>
## 1 Inf 0 0 496 36 0 0
## 2 11 1 0 496 35 0.0506 0.0541
## 3 10 2 1 495 34 0.0931 0.103
## 4 9 3 1 495 33 0.138 0.15
## 5 8 4 1 495 32 0.182 0.195
## 6 7 7 1 495 29 0.301 0.318
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.