The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The goal of cvap
is to work with Census citizen
voting-age population (CVAP) data.
You can install the released version of cvap from CRAN with:
install.packages("cvap")
Install the development version from GitHub with:
# install.packages("devtools")
::install_github("christopherkenny/cvap") devtools
The primary tools from this package are to first download CVAP data that’s already processed.
library(cvap)
<- cvap_get('DE') de_cvap
cvap_get()
has options for the available geographies in
the Census
special tabulation.
With that data, we can combine it with ACS and Decennial Census data to estimate block-level data.
<- censable::build_dec(geography = 'block', state = 'DE',
de_block year = 2010, geometry = FALSE)
<- censable::build_acs(geography = 'block group', state = 'DE',
de_block_group geometry = FALSE, year = 2019)
For example purposes, the 2010 Delaware Census block data is provided:
data('de_block')
Along with the Delaware 2019 ACS data:
data('de_block_group')
This allows us to distribute the block group data approximately between blocks.
<- cvap_distribute(de_cvap, de_block, de_block_group) block_est
This workflow can also be combined into one function
<- cvap_distribute_censable('DE') block_est
The resulting data has estimated CVAP data for each block:
::glimpse(block_est)
dplyr#> Rows: 24,115
#> Columns: 29
#> $ GEOID <chr> "100010401001000", "100010401001001", "100010401001002", "1~
#> $ NAME <chr> "Block 1000, Block Group 1, Census Tract 401, Kent County, ~
#> $ pop <dbl> 77, 294, 20, 91, 53, 6, 50, 0, 0, 21, 294, 19, 0, 23, 42, 0~
#> $ pop_white <dbl> 53, 280, 20, 91, 50, 6, 47, 0, 0, 19, 261, 18, 0, 23, 41, 0~
#> $ pop_black <dbl> 9, 5, 0, 0, 0, 0, 3, 0, 0, 0, 19, 1, 0, 0, 1, 0, 1, 0, 0, 1~
#> $ pop_hisp <dbl> 9, 3, 0, 0, 3, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 7,~
#> $ pop_aian <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
#> $ pop_asian <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
#> $ pop_nhpi <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
#> $ pop_other <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
#> $ pop_two <dbl> 4, 5, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0,~
#> $ vap <dbl> 48, 223, 12, 64, 44, 6, 42, 0, 0, 14, 203, 13, 0, 13, 30, 0~
#> $ vap_white <dbl> 36, 214, 12, 64, 42, 6, 40, 0, 0, 13, 179, 12, 0, 13, 29, 0~
#> $ vap_black <dbl> 4, 4, 0, 0, 0, 0, 2, 0, 0, 0, 14, 1, 0, 0, 1, 0, 1, 0, 0, 1~
#> $ vap_hisp <dbl> 5, 1, 0, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 2,~
#> $ vap_aian <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
#> $ vap_asian <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
#> $ vap_nhpi <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
#> $ vap_other <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
#> $ vap_two <dbl> 1, 3, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
#> $ cvap <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
#> $ cvap_white <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
#> $ cvap_black <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
#> $ cvap_hisp <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
#> $ cvap_asian <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
#> $ cvap_aian <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
#> $ cvap_nhpi <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
#> $ cvap_two <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
#> $ cvap_other <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,~
Thus, using other packages like PL94171
, we can easily
aggregate this from blocks to VTDs, where CVAP is not directly provided.
vest_crosswalk
allows you to download a variant of VEST’s
crosswalk that is computationally more favorable for R.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.