Controlling plot aesthetics is very simple in dabestr. An integral
part to the design of dabestr is to allow its users to freely adjust the
various components of a DABEST estimation plot, allowing for the most
ideal looking plot to be produced.
Getting started
At this point, we assume that you have already obtained the
dabest_effectsize_obj
. To add and adjust specific plot
components, simply add it as a argument into the
dabest_plot()
function.
dabest_plot(
dabest_effectsize_obj,
float_contrast = TRUE,
plot_component = "adjustment_value"
)
Adjusting Text
All text elements in the estimation plot can be adjusted. This
includes the value, the size and even removal of the text elements
completely.
Size
The following parameters are responsible for adjusting the size of
the text elements.
swarm_x_text
: Default 11. Numeric value determining the
font size of the x-axis of the swarm plot.
swarm_y_text
: Default 15. Numeric value determining the
font size of the y-axis of the swarm plot.
contrast_x_text
: Default 11. Numeric value determining
the font size of the x-axis of the contrast plot.
contrast_y_text
: Default 15. Numeric value determining
the font size of the y-axis of the contrast plot.
dabest_plot(
dabest_twogroup_obj.mean_diff,
float_contrast = TRUE,
swarm_x_text = 30,
swarm_y_text = 1,
contrast_x_text = 30,
contrast_y_text = 5
)
Content
The following parameters are responsible for adjusting the content of
the text elements.
swarm_label
: Default “value” or “proportion of success”
for proportion plots. Label for the y-axis of the swarm plot.
contrast_label
: Default “effect size”, based on the
effect sizes as given in effect_size()
. Label for the
y-axis of the contrast plot.
delta2_label
: Default NULL. Label for the y-label for
the delta-delta plot.
dabest_plot(
dabest_twogroup_obj.mean_diff,
float_contrast = TRUE,
swarm_label = "I love estimation statistics.",
contrast_label = "I love it more than you do!"
)
Adjusting Visual Elements
Visual elements refer to the shapes, lines, symbols or other visual
representations that convey data and relationship in a plot. Many of
these elements can be adjusted in dabestr.
Markers
The following parameters are responsible for adjusting the properties
of various markers in the plot.
raw_marker_size
Default 1.5. Numeric value determining
the size of the points used in the swarm plot.
raw_marker_alpha
Default 1. Numeric value determining
the transparency of the points in the swarm plot.
raw_bar_width
Default 0.3. Numeric value determining
the width of the bar in the sankey diagram.
raw_marker_spread
Default 2. The distance between the
points if it is a swarm plot.
raw_marker_side_shift
Default 0. The horizontal
distance that the swarm plot points are moved in the direction of the
asymmetric_side
..
tufte_size
Default 0.8. Numeric value determining the
size of the tufte line in the swarm plot.
es_marker_size
Default 0.5. Numeric value determining
the size of the points used in the delta plot.
es_line_size
Default 0.8. Numeric value determining the
size of the ci line in the delta plot.
A <- dabest_plot(dabest_twogroup_obj.mean_diff,
float_contrast = TRUE,
swarm_label = "", contrast_label = "",
raw_marker_size = 1, raw_marker_alpha = 1
)
B <- dabest_plot(dabest_twogroup_obj.mean_diff,
float_contrast = TRUE,
swarm_label = "", contrast_label = "",
raw_marker_size = 2, raw_marker_alpha = 0.5
)
cowplot::plot_grid(
plotlist = list(A, B),
nrow = 1,
ncol = 2,
labels = "AUTO"
)
Axes
The following parameters are responsible for adjusting the y-axis
limits for the rawdata axes and contrast axes of the plot. By adjusting
the range, it gives rise to the effect of zooming in or out of the
plot.
swarm_ylim
Default NULL. Vector containing the y-limits
for the swarm plot.
contrast_ylim
Default NULL. Vector containing the
y-limits for the delta plot.
delta2_ylim
Default NULL. Vector containing the
y-limits for the delta-delta plot.
If your effect size is qualitatively inverted (ie. a smaller value is
a better outcome), you can invert the vector passed to
contrast_ylim.
dabest_plot(dabest_multigroup_obj.mean_diff,
float_contrast = FALSE,
contrast_label = "More negative is better!",
swarm_ylim = c(1, 5), contrast_ylim = c(0.7, -1.2)
)
Palettes
The following parameters are responsible for adjusting the plot
palettes of the plot.
custom_palette
Default “d3”. String. The following
palettes are available for use: npg, aaas, nejm, lancet, jama, jco,
ucscgb, d3, locuszoom, igv, cosmic, uchicago, brewer, ordinal,
viridis_d.
npg <- dabest_plot(dabest_unpaired_props.mean_diff,
swarm_label = "", contrast_label = "",
custom_palette = "npg"
)
nejm <- dabest_plot(dabest_unpaired_props.mean_diff,
swarm_label = "", contrast_label = "",
custom_palette = "nejm"
)
jama <- dabest_plot(dabest_unpaired_props.mean_diff,
swarm_label = "", contrast_label = "",
custom_palette = "jama"
)
locuszoom <- dabest_plot(dabest_unpaired_props.mean_diff,
swarm_label = "", contrast_label = "",
custom_palette = "locuszoom"
)
cowplot::plot_grid(
plotlist = list(npg, nejm, jama, locuszoom),
nrow = 2,
ncol = 2
)
Misc
sankey
Default TRUE. Boolean value determining if the
flows between the bar charts will be plotted.
dabest_plot(dabest_paired_props.mean_diff, sankey = FALSE, raw_bar_width = 0.15)
flow
Default TRUE. Boolean value determining whether
the bars will be plotted in pairs.
dabest_plot(dabest_paired_props.mean_diff, flow = FALSE, raw_bar_width = 0.15)
asymmetric_side
Default “right”. Can be either “right”
or “left”. Controls which side the swarm points are shown.
right <- dabest_plot(dabest_twogroup_obj.mean_diff,
float_contrast = FALSE,
swarm_label = "", contrast_label = "",
asymmetric_side = "right"
)
left <- dabest_plot(dabest_twogroup_obj.mean_diff,
float_contrast = FALSE,
swarm_label = "", contrast_label = "",
asymmetric_side = "left"
)
cowplot::plot_grid(
plotlist = list(right, left),
nrow = 1,
ncol = 2
)
show_delta2
Default FALSE. Boolean value determining if
the delta-delta plot is shown.
show_mini_meta
Default FALSE. Boolean value determining
if the weighted average plot is shown. If False, the resulting graph
would be identical to a multiple two-groups plot.
show_zero_dot
Default TRUE. Boolean value determining
if there is a dot on the zero line of the effect size for the
control-control group.
show_baseline_ec
Default FALSE. Boolean value
determining whether the baseline curve is shown.
dabest_plot(dabest_multigroup_obj.mean_diff,
float_contrast = FALSE,
show_baseline_ec = TRUE
)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.