The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
dsiNMF
)In this vignette, we consider approximating non-negative multiple matrices as a product of binary (or non-negative) low-rank matrices (a.k.a., factor matrices).
Test data is available from toyModel
.
You will see that there are some blocks in the data matrices as follows.
Here, we consider the approximation of \(K\) binary data matrices \(X_{k}\) (\(N \times M_{k}\)) as the matrix product of \(W\) (\(N \times J\)) and \(V_{k}\) (J \(M_{k}\)):
\[ X_{k} \approx W H_{k} \ \mathrm{s.t.}\ W,H_{k} \in \{0,1\} \]
This is the combination of binary matrix factorization (BMF (Z. et al. Zhang 2007)) and simultaneous non-negative matrix decomposition (siNMF (Badea 2008; S. et al. Zhang 2012; Yilmaz 2010; CICHOCK 2009)), which is implemented by adding binary regularization against siNMF.
For the details of arguments of dsiNMF, see ?dsiNMF
.
After the calculation, various objects are returned by
dsiNMF
.
See also siNMF
function of nnTensor
package.
In BSMF, a rank parameter \(J\)
(\(\leq \min(N, M)\)) is needed to be
set in advance. Other settings such as the number of iterations
(num.iter
) or factorization algorithm
(algorithm
) are also available. For the details of
arguments of dsiNMF, see ?dsiNMF
. After the calculation,
various objects are returned by dsiNMF
. BSMF is achieved by
specifying the binary regularization parameter as a large value like the
below:
set.seed(123456)
out_dsiNMF <- dsiNMF(X, Bin_W=1E+1, Bin_H=c(1E+1, 1E+1, 1E+1), J=3)
str(out_dsiNMF, 2)
## List of 6
## $ W : num [1:100, 1:3] 0.000534 0.000534 0.000534 0.000534 0.000534 ...
## $ H :List of 3
## ..$ : num [1:300, 1:3] 1.37e-10 8.92e-11 1.77e-10 3.42e-10 9.71e-11 ...
## ..$ : num [1:200, 1:3] 1.11e-10 3.15e-10 1.14e-10 1.58e-10 5.23e-10 ...
## ..$ : num [1:150, 1:3] 0.998 0.998 0.998 0.998 0.998 ...
## $ RecError : Named num [1:101] 1.00e-09 1.27e+02 1.16e+02 1.11e+02 1.09e+02 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TrainRecError: Named num [1:101] 1.00e-09 1.27e+02 1.16e+02 1.11e+02 1.09e+02 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TestRecError : Named num [1:101] 1e-09 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ RelChange : Named num [1:101] 1.00e-09 5.25e-01 9.17e-02 4.06e-02 2.12e-02 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
The reconstruction error (RecError
) and relative error
(RelChange
, the amount of change from the reconstruction
error in the previous step) can be used to diagnose whether the
calculation is converged or not.
layout(t(1:2))
plot(log10(out_dsiNMF$RecError[-1]), type="b", main="Reconstruction Error")
plot(log10(out_dsiNMF$RelChange[-1]), type="b", main="Relative Change")
The products of \(W\) and \(H_{k}\)s show whether the original data
marices are well-recovered by dsiNMF
.
recX <- lapply(seq_along(X), function(x){
out_dsiNMF$W %*% t(out_dsiNMF$H[[x]])
})
layout(rbind(1:3, 4:6))
image.plot(X[[1]], main="X1", legend.mar=8)
image.plot(X[[2]], main="X2", legend.mar=8)
image.plot(X[[3]], main="X3", legend.mar=8)
image.plot(recX[[1]], main="Reconstructed X1", legend.mar=8)
image.plot(recX[[2]], main="Reconstructed X2", legend.mar=8)
image.plot(recX[[3]], main="Reconstructed X3", legend.mar=8)
The histograms of \(H_{k}\)s show that \(H_{k}\)s look binary.
Semi-Binary Simultaneous Matrix Factorization (SBSMF) is an extension of BSMF; we can select specific factor matrix (or matrices).
To demonstrate SBSMF, next we use non-negative matrices from the
nnTensor
package.
suppressMessages(library("nnTensor"))
X2 <- nnTensor::toyModel("siNMF_Easy")
layout(t(1:3))
image.plot(X2[[1]], main="X1", legend.mar=8)
image.plot(X2[[2]], main="X2", legend.mar=8)
image.plot(X2[[3]], main="X3", legend.mar=8)
In SBSMF, a rank parameter \(J\)
(\(\leq \min(N, M)\)) is needed to be
set in advance. Other settings such as the number of iterations
(num.iter
) or factorization algorithm
(algorithm
) are also available. For the details of
arguments of dsiNMF, see ?dsiNMF
. After the calculation,
various objects are returned by dsiNMF
. SBSMF is achieved
by specifying the binary regularization parameter as a large value like
the below:
## List of 6
## $ W : num [1:100, 1:3] 0.0988 0.1006 0.1057 0.1023 0.1003 ...
## $ H :List of 3
## ..$ : num [1:300, 1:3] 4.32e-10 2.58e-10 6.12e-10 1.84e-09 3.78e-10 ...
## ..$ : num [1:200, 1:3] 5.59e-15 2.28e-14 2.49e-14 2.74e-14 8.56e-14 ...
## ..$ : num [1:150, 1:3] 95.6 92.7 94 96.2 95.1 ...
## $ RecError : Named num [1:101] 1.00e-09 1.18e+04 1.14e+04 1.09e+04 1.08e+04 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TrainRecError: Named num [1:101] 1.00e-09 1.18e+04 1.14e+04 1.09e+04 1.08e+04 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TestRecError : Named num [1:101] 1e-09 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ RelChange : Named num [1:101] 1.00e-09 1.07e-01 3.54e-02 4.11e-02 1.25e-02 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
RecError
and RelChange
can be used to
diagnose whether the calculation is converged or not.
layout(t(1:2))
plot(log10(out_dsiNMF2$RecError[-1]), type="b", main="Reconstruction Error")
plot(log10(out_dsiNMF2$RelChange[-1]), type="b", main="Relative Change")
The products of \(W\) and \(H_{k}\)s show whether the original data is
well-recovered by dsiNMF
.
recX <- lapply(seq_along(X2), function(x){
out_dsiNMF2$W %*% t(out_dsiNMF2$H[[x]])
})
layout(rbind(1:3, 4:6))
image.plot(X2[[1]], main="X1", legend.mar=8)
image.plot(X2[[2]], main="X2", legend.mar=8)
image.plot(X2[[3]], main="X3", legend.mar=8)
image.plot(recX[[1]], main="Reconstructed X1", legend.mar=8)
image.plot(recX[[2]], main="Reconstructed X2", legend.mar=8)
image.plot(recX[[3]], main="Reconstructed X3", legend.mar=8)
The histograms of \(H_{k}\)s show that all the factor matrices \(H_{k}\)s look binary.
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] nnTensor_1.2.0 fields_15.2 viridisLite_0.4.2 spam_2.9-1
## [5] dcTensor_1.3.0
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.4 jsonlite_1.8.7 highr_0.10 compiler_4.3.1
## [5] maps_3.4.1 Rcpp_1.0.11 plot3D_1.4 tagcloud_0.6
## [9] jquerylib_0.1.4 scales_1.2.1 yaml_2.3.7 fastmap_1.1.1
## [13] ggplot2_3.4.3 R6_2.5.1 tcltk_4.3.1 knitr_1.43
## [17] MASS_7.3-60 dotCall64_1.0-2 misc3d_0.9-1 tibble_3.2.1
## [21] munsell_0.5.0 pillar_1.9.0 bslib_0.5.1 RColorBrewer_1.1-3
## [25] rlang_1.1.1 utf8_1.2.3 cachem_1.0.8 xfun_0.40
## [29] sass_0.4.7 cli_3.6.1 magrittr_2.0.3 digest_0.6.33
## [33] grid_4.3.1 rTensor_1.4.8 lifecycle_1.0.3 vctrs_0.6.3
## [37] evaluate_0.21 glue_1.6.2 fansi_1.0.4 colorspace_2.1-0
## [41] rmarkdown_2.24 pkgconfig_2.0.3 tools_4.3.1 htmltools_0.5.6
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.