
Package ‘defm’
February 13, 2026

Type Package

Title Estimation and Simulation of Multi-Binary Response Models

Version 0.2.1.0

Description Multi-binary response models are a class of models that allow for the estimation of multi-
ple binary outcomes simultaneously. This package provides functions to estimate and simu-
late these models using the Discrete Exponential-Family Models [DEFM] frame-
work. In it, we implement the models described in Vega Yon, Va-
lente, and Pugh (2023) <doi:10.48550/arXiv.2211.00627>. DEFMs include Exponential-
Family Random Graph Models [ERGMs], which characterize graphs using sufficient statis-
tics, which is also the core of DEFMs. Using sufficient statistics, we can de-
scribe the data through meaningful motifs, for example, transitions between differ-
ent states, joint distribution of the outcomes, etc.

URL https://github.com/UofUEpiBio/defm,

https://uofuepibio.github.io/defm/

BugReports https://github.com/UofUEpiBio/defm/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

LinkingTo Rcpp, barry

Imports Rcpp, stats

Depends R (>= 4.1.0), stats4

Suggests texreg, tinytest, barry

NeedsCompilation yes

Author George Vega Yon [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3171-0844>),

Department of Veterans Affairs - Rehabilitation, Research, and
Development Service [fnd] (Award/W81XWH-18-PH/TBIRP-LIMBIC under
Award No. I01 RX003443),

U.S. Army Medical Research Acquisition Activity [fnd] (ORION project,
Award #W81XWH1910615)

1

https://doi.org/10.48550/arXiv.2211.00627
https://github.com/UofUEpiBio/defm
https://uofuepibio.github.io/defm/
https://github.com/UofUEpiBio/defm/issues
https://orcid.org/0000-0002-3171-0844

2 DEFM

Maintainer George Vega Yon <g.vegayon@gmail.com>

Repository CRAN

Date/Publication 2026-02-13 07:30:09 UTC

Contents
DEFM . 2
defm-names . 5
defm_terms . 6
get_counters . 8
get_stats . 10
loglike_defm . 11
logodds . 12
motif_census . 14
sim_defm . 15
valentesns . 15

Index 17

DEFM Discrete Exponential Family Model (DEFM)

Description

Discrete Exponential Family Models (DEFMs) are models from the exponential family that deal
with discrete data. Here, we deal with binary arrays which can be used to represent, among other
things, networks and multinomial binary Markov processes.

Discrete Exponential Family Models (DEFMs) are models from the exponential family that deal
with discrete data. Here, we deal with binary arrays which can be used to represent, among other
things, networks and multinomial binary Markov processes.

Usage

new_defm_cpp(id, Y, X, order = 1L, copy_data = TRUE)

init_defm(m, force_new = FALSE)

print_stats(m, i = 0L)

nterms_defm(m)

nrow_defm(m)

ncol_defm_y(m)

ncol_defm_x(m)

DEFM 3

nobs_defm(m)

morder_defm(m)

new_defm(id, Y, X, order = 1, copy_data = TRUE)

Arguments

id Integer vector of length n. Observation ids, for example, person id.

Y 0/1 matrix of responses of n_y columns and n rows.

X Numeric matrix of covariates of size n_x by n.

order Integer. Order of the markov process, by default, 1.

copy_data Logical, if TRUE (default) the data is copied to the C++ side. If FALSE, the data
is not copied, and the user must ensure that the data is not modified in R while
the model exists.

m An object of class DEFM.

force_new Logical scalar. When TRUE (default) no cache is used to add new arrays (see
details).

i An integer scalar indicating which set of statistics to print (see details.)

Details

The id vector is used to group the observations. For example, if you have a dataset with multi-
ple individuals, the id vector should contain the individual ids. The Y matrix contains the binary
responses, where each column represents a different response variable. The X matrix contains the
covariates, which can be used to model the relationship between the responses and the covariates.
The order parameter specifies the order of the Markov process, which determines how many pre-
vious observations are used to predict the current observation.

The copy_data parameter specifies whether the data should be copied into the model or used as a
pointer. If copy_data is TRUE, the data will be copied into the model, which can be useful if you
want to avoid duplicating the data in memory. If copy_data is FALSE, the model will use the data
as a pointer, which can be more efficient (but dangerous if the data is removed).

The init_defm function initializes the model, which means it computes the sufficient statistics and
prepares the model for fitting. The force_new parameter specifies whether to force the model to be
consider each array added as completely unique, even if it has the same support set as an existing
array. This is an experimental feature and should be used with caution.

The print_stats function prints the supportset of the ith type of array in the model.

Value

An external pointer of class DEFM.

• nterms_defm returns the number of terms in the model.

• nrow_defm returns the number of rows in the model.

4 DEFM

• ncol_defm_y returns the number of output variables in the model.

• ncol_defm_x returns the number of covariates in the model.

• nobs_defm returns the number of observations (events) in the model.

• morder_defm returns the order of the Markov process.

An external pointer of class DEFM.

References

Vega Yon, G. G., Pugh, M. J., & Valente, T. W. (2022). Discrete Exponential-Family Models for
Multivariate Binary Outcomes (arXiv:2211.00627). arXiv. https://arxiv.org/abs/2211.00627

See Also

defm_mle() for maximum likelihood estimation and loglike_defm() for the log-likelihood func-
tion.

Examples

Loading Valente's SNS data
data(valentesnsList)

mymodel <- new_defm(
id = valentesnsList$id,
Y = valentesnsList$Y,
X = valentesnsList$X,
order = 1

)

Adding the intercept terms and a motif from tobacco to mj
td_logit_intercept(mymodel)
td_formula(mymodel, "{y1, 0y2} > {y1, y2}")

Initialize the model
init_defm(mymodel)

Fitting the MLE
defm_mle(mymodel)

https://arxiv.org/abs/2211.00627

defm-names 5

defm-names Access to the names of a model’s datasets

Description

Retrieve the column names of the dependent variable (y) and independent variable (x) of an object
of class DEFM.

Usage

get_Y_names(m)

get_X_names(m)

Arguments

m An object of class DEFM.

Value

A character vector.

A character vector with the names of the dependent or independent variables.

Examples

#' Using Valente's SNS data
data(valentesnsList)

Creating the DEFM object
mymodel <- new_defm(

id = valentesnsList$id,
X = valentesnsList$X,
Y = valentesnsList$Y,
order = 0

)

Getting the names
get_X_names(mymodel)
get_Y_names(mymodel)

6 defm_terms

defm_terms Model specification for DEFM

Description

Model specification for DEFM

Usage

td_ones(m, covar = "")

td_generic(m, mat, covar = "")

td_formula(m, formula, new_name = "")

td_logit_intercept(m, y_indices = as.integer(c()), covar = "")

rule_not_one_to_zero(m, term_indices)

rule_constrain_support(m, term_index, lb, ub)

S3 method for class 'DEFM'
e1 + e2

Arguments

m An object of class DEFM.

covar String. Name of a covariate to use as an interaction for the effect. If equal to "",
then no interaction effect. is used. used to weight the term.

mat Integer matrix. The matrix specifies the type of motif to capture (see details.)

formula Character scalar (see details).

new_name Character scalar. Name to be assigned for the new term. if empty, then it builds
a name based on the formula.

y_indices Integer vector with the coordinates to include in the term.

term_indices Non-negative vector of indices. Indicates which outcomes this rule will apply.

term_index Non-negative scalar. Which term this rule will apply.

lb, ub Numeric scalars. Lower and upper bounds.

e1, e2 e1 An object of class DEFM (e1) and a character (e2).

Details

In td_generic, users can specify a particular motif to model. Motifs are represented by cells with
values equal to 1, for example, the matrix:

defm_terms 7

t0: 1 NA NA
t1: 1 1 NA

represents a transition y0 -> (y1, y2). If 0 is a motif of interest, then the matrix should include 0
to mark zero values.

The function td_formula, will take the formula and generate the corresponding input for defm::counter_transition().
Formulas can be specified in the following ways:

• Intercept effect: {...} No transition, only including the current state.

• Transition effect: {...} > {...} Includes current and previous states.

The general notation is [0]y[column id]_[row id]. A preceeding zero means that the value of
the cell is considered to be zero. The column id goes between 0 and the number of columns in the
array - 1 (so it is indexed from 0,) and the row id goes from 0 to m_order.

Both Intercepts and Transition can interact with covariates. Using either the covar argument or, in
the case of formulas, x [Covar name], for example:

• Intercept effect: {...} x Hispanic interacts with the Hispanic covar.

• Transition effect: {...} > {...} x Hispanic Same.

Intercept effects:
Intercept effects only involve a single set of curly brackets. Using the ’greater-than’ symbol (i.e.,
<) is only for transition effects. When specifying intercept effects, users can skip the row_id, e.g.,
y0_0 is equivalent to y0. If the passed row id is different from the Markov order, i.e., row_id !=
m_order, then the function returns with an error.
Examples:

• "{y0, 0y1}" is equivalent to set a motif with the first element equal to one and the second to
zero.

Transition effects:
Transition effects can be specified using two sets of curly brackets and an greater-than symbol,
i.e., {...} > {...}. The first set of brackets, which we call LHS, can only hold row id that are
less than m_order.

The term td_logit_intercept will add what is equivalent to an intercept in a logistic regression.
When y_indices is specified, then the function will add one intercept per outcome. These can be
weighted by a covariate.

The function rule_not_one_to_zero will avoid the transition one to zero in a Markov process.

The function rule_constrain_support will constrain the support of the model by specifying a
lower and upper bound for a given statistic.

The + method is a shortcut for term_formula

Value

Invisible 0.

8 get_counters

Examples

Loading Valtente's SNS data
data(valentesnsList)

mymodel <- new_defm(
id = valentesnsList$id,
Y = valentesnsList$Y,
X = valentesnsList$X,
order = 1

)

Conventional regression intercept
td_logit_intercept(mymodel)

Interaction effect with Hispanic
td_logit_intercept(mymodel, covar = "Hispanic")

Transition effect from only y1 to both equal to 1.
td_formula(mymodel, "{y1, 0y2} > {y1, y2}")

Same but interaction with Female
td_formula(mymodel, "{y1, 0y2} > {y1, y2} x Female")

Inspecting the model
mymodel

Initializing and fitting
init_defm(mymodel)
defm_mle(mymodel)

get_counters Extract the counters from a DEFM model

Description

Counters are functions that are defined in terms of the change statistics. The counters also contain
a hasher that is used internally to check whether an array’s support is cached or not (see details).

Usage

get_counters(model)

S3 method for class 'DEFM_counters'
counters[i]

set_counter_info(counter, new_name = "", new_desc = "")

S3 method for class 'DEFM_counters'
length(x)

get_counters 9

S3 method for class 'DEFM_counters'
as.list(x, ...)

S3 method for class 'DEFM_counter'
as.list(x, ...)

set_counters_names(x, ...)

S3 method for class 'DEFM'
set_counters_names(x, ...)

S3 method for class 'DEFM_counters'
set_counters_names(x, ...)

Arguments

model A DEFM model object.

counters An object of class DEFM_counters.

i Integer from 0 to nterms - 1. Counter to get.

counter An object of class DEFM_counter.
new_name, new_desc

Strings with the new name and new description, respectively. If empty, no side
effect.

x Either a DEFM_counters or a DEFM_counter object.

... Further arguments passed to the method (not used).

Details

If the hash of an array–which are built using each counters’ individual hashing functions–matches
an existing array, then, the DEFM models reduce computational burden by recycling computations
of the normalizing constant. For example, if a model only includes terms (counters) that do not
feature individual-level characteristics like gender or age, then most likely all arrays in that model
will use the same normalizing constant.

The function set_counter_info() can be used to modify a counter name and description. This is
especially useful when a name is particularly long.

Value

• The function get_counters returns an external pointer to an object of class DEFM_counters.

• The method [.DEFM_counters returns an individual counter of class DEFM_counter.

• set_counter_info() invisibly returns the modified counter.

• The length method for DEFM_counters returns the number of counters in the vector. This
should match the return from nterms_defm().

10 get_stats

• The as.list methods return a list with the name and description of the counters.

• The function set_counters_names() returns the counters invisibly.

get_stats Get sufficient statistics counts

Description

This function computes the individual counts of the sufficient statistics included in the model.

Usage

get_stats(m)

Arguments

m An object of class DEFM.

Value

A matrix with the counts of the sufficient statistics.

Examples

data(valentesnsList)

mymodel <- new_defm(
id = valentesnsList$id,
Y = valentesnsList$Y,
X = valentesnsList$X,
order = 1

)

Adding the intercept terms and a motif from tobacco to mj
td_logit_intercept(mymodel)
td_formula(mymodel, "{y1, 0y2} > {y1, y2}")

Initialize the model
init_defm(mymodel)

Get the counts
head(get_stats(mymodel))

loglike_defm 11

loglike_defm Log-Likelihood of DEFM

Description

Log-Likelihood of DEFM

Usage

loglike_defm(m, par, as_log = TRUE)

Arguments

m An object of class DEFM

par A vector of parameters of length nterms_defm(m).

as_log Logical scalar. When TRUE (default) returns the log-likelihood, otherwise it re-
turns the likelihood.

Value

Numeric, the computed likelihood or log-likelihood of the model.

Examples

Loading Valtente's SNS data
data(valentesnsList)

mymodel <- new_defm(
id = valentesnsList$id,
Y = valentesnsList$Y,
X = valentesnsList$X,
order = 1

)

Adding the intercept terms and a motif from tobacco to mj
td_logit_intercept(mymodel)
td_formula(mymodel, "{y1, 0y2} > {y1, y2}")

Computing the log-likelihood
loglike_defm(mymodel, par = c(-1, -1, -1, 2), as_log = TRUE)

12 logodds

logodds Maximum Likelihood Estimation of DEFM

Description

Fits a Discrete Exponential-Family Model using Maximum Likelihood.

Usage

logodds(m, par, i, j)

defm_mle(object, start, lower, upper, ...)

summary_table(object, as_texreg = FALSE, ...)

texreg_fancy(fits, fun, skip_intercept = FALSE, ...)

Arguments

m An object of class DEFM.

par The parameters of the model.

i, j The row and column of the array to turn on for the log odds.

object An object of class DEFM.

start Double vector. Starting point for the MLE.

lower, upper Lower and upper limits for the optimization (passed to stats4::mle.)

... Further arguments passed to summary_table (with the exception of as_texreg,
which is set to TRUE).

as_texreg When TRUE, wraps the result in a texreg object

fits Either a single or a list of defm fit objects.

fun Function to be called from the texreg package, e.g., texreg::screenreg.

skip_intercept Whether or not to skip the intercept (logit) terms when printing the table

Details

The likelihood function of the DEFM is closely-related to the Exponential-Family Random Graph
Model [ERGM]. Furthermore, the DEFM can be treated as a generalization of the ERGM. The
model implemented here can be viewed as an ERGM for a bipartite network, where the actors are
individuals and the events are the binary outputs.

If the model features no markov terms, i.e., terms that depend on more than one output, then the
model is equivalent to a logistic regression. The example below shows this equivalence.

The function summary_table computes pvalues and returns a table with the estimates, se, and
pvalues. If as_texreg = TRUE, then it will return a texreg object.

logodds 13

Value

• logodds returns a numeric vector with the log-odds for each observation in the data.

An object of class stats4::mle.

An object of class texreg with additional attributes: custom.coef.map, reorder.coef, and groups.

References

Vega Yon, G. G., Pugh, M. J., & Valente, T. W. (2022). Discrete Exponential-Family Models for
Multivariate Binary Outcomes (arXiv:2211.00627). arXiv. https://arxiv.org/abs/2211.00627

See Also

DEFM for objects of class DEFM and loglike_defm() for the log-likelihood function of DEFMs.

Examples

#' Using Valente's SNS data
data(valentesnsList)

Creating the DEFM object
logit_0 <- new_defm(

id = valentesnsList$id,
X = valentesnsList$X,
Y = valentesnsList$Y[,1,drop=FALSE],
order = 0

)

Building the model
td_logit_intercept(logit_0)
td_logit_intercept(logit_0, covar = "Hispanic")
td_logit_intercept(

logit_0,
covar = "exposure_smoke"

)
td_logit_intercept(logit_0, covar = "Grades")
init_defm(logit_0) # Needs to be initialized

Fitting the model
res_0 <- defm_mle(logit_0)

Refitting the model using GLM
res_glm <- with(

valentesnsList,
glm(Y[,1] ~ X[,1] + X[,3] + X[,7], family = binomial())
)

Comparing results
summary_table(res_0)
summary(res_glm)

Comparing the logodds

https://arxiv.org/abs/2211.00627

14 motif_census

head(logodds(logit_0, par = coef(res_0), i = 0, j = 0))

motif_census Motif census

Description

Calculates the total motif counts for a given model, in terms of the number of times each motif
appears in the data.

Usage

motif_census(m, y_indices)

Arguments

m An object of class DEFM.

y_indices Non-negative integer vector indicating what dependent variables will be in-
cluded.

Value

A matrix of class defm_motif_census with the motif counts.

References

Vega Yon, G. G., Pugh, M. J., & Valente, T. W. (2022). Discrete Exponential-Family Models for
Multivariate Binary Outcomes (arXiv:2211.00627). arXiv. https://arxiv.org/abs/2211.00627

Examples

Loading Valente's SNS data
data(valentesnsList)

mymodel <- new_defm(
id = valentesnsList$id,
Y = valentesnsList$Y,
X = valentesnsList$X,
order = 1

)

Adding the intercept terms and a motif from tobacco to mj
td_logit_intercept(mymodel)
td_formula(mymodel, "{y1, 0y2} > {y1, y2}")

Initialize the model
init_defm(mymodel)

https://arxiv.org/abs/2211.00627

sim_defm 15

Motif counts featuring only the first two variables
motif_census(mymodel, y_indices = 0:1)

sim_defm Simulate data using a DEFM

Description

Simulate data using a DEFM

Usage

sim_defm(m, par, fill_t0 = TRUE)

Arguments

m An object of class DEFM. The baseline model.

par Numeric vector of model parameters.

fill_t0 Logical scalar. When TRUE (default) will fill-in the baseline value of each obser-
vation (i.e., the starting condition) (see details.)

Details

Each observation in the simulation must have initial condition. In practice, this means we start
the markov process with a matrix of size morder_defm(m) x ncol_defm_y(m), i.e., order of the
Markov process times the number of output variables. when fill_t0 = TRUE, the function return
the rows corresponding to baseline states with the original value, otherwise it replaces them with
-1. This option is mostly for testing purposes.

Value

An integer vector of size nrows_defm(m) x ncol_defm_y(m).

valentesns Valente’s SNS data

Description

This dataset contains the data used in Valente et al. (2013) to study the influence of peers on
adolescent smoking, drinking, and marijuana use. The valentesnsList is a transformed version
of the data ready to be used to create defm objects.

Usage

valentesns

16 valentesns

Format

The valentesns dataset has 1,722 records for 568 individuals, featuring the following 18 columns:

• id: Id of the individual.

• year: Wave number.

• Hispanic: Indicator variable equal to 1 if the individual is Hispanic.

• Female: Indicator variable equal to 1 if the individual is female.

• Grades: Academic grades ranging from 1 (mostly F) to 5 (mostly As).

• tobacco: Indicator variable if the individual ever smoked tobacco.

• alcohol: Indicator variable if the individual ever drink alcohol.

• mj: : Indicator variable if the individual ever smoked marijuana.

• sibsmoke : Indicator variable if the individual’s sibling smokes.

• sibdrink: Indicator variable if the individual’s sibling drinks alcohol.

• adultdrink: Indicator variable equal to one if there’s an adult who drinks in the household.

• year_value: Year of the survey.

• present: Indicator variable equal to 1 if the individual was present.

• school: School id.

• has_sib: Indicator variable equal to 1 if the individual has siblings.

• exposure_smoke: Proportion of friends who have smoked tobacco in the past.

• exposure_drink: Proportion of friends who have drink alcohol in the past.

• exposure_mj: Proportion of friends who have smoked marijuana in the past.

Exposure variables are marked with -1 for each individuals’ first wave.

Source

Valente, T. W., Fujimoto, K., Unger, J. B., Soto, D. W., & Meeker, D. (2013). Variations in network
boundary and type: A study of adolescent peer influences. Social Networks, 35(3), 309–316. doi:
10.1016/j.socnet.2013.02.008.

doi:10.1016/j.socnet.2013.02.008
doi:10.1016/j.socnet.2013.02.008

Index

∗ datasets
valentesns, 15

+.DEFM (defm_terms), 6
[.DEFM_counters (get_counters), 8

as.list.DEFM_counter (get_counters), 8
as.list.DEFM_counters (get_counters), 8

DEFM, 2, 5, 6, 9–15
defm (DEFM), 2
defm-names, 5
defm_mle (logodds), 12
defm_mle(), 4
defm_motif_census, 14
defm_motif_census (motif_census), 14
defm_terms, 6

get_counters, 8
get_stats, 10
get_X_names (defm-names), 5
get_Y_names (defm-names), 5

init_defm (DEFM), 2

length.DEFM_counters (get_counters), 8
loglike_defm, 11
loglike_defm(), 4, 13
logodds, 12

morder_defm (DEFM), 2
motif_census, 14

ncol_defm_x (DEFM), 2
ncol_defm_y (DEFM), 2
new_defm (DEFM), 2
new_defm_cpp (DEFM), 2
nobs_defm (DEFM), 2
nrow_defm (DEFM), 2
nterms_defm (DEFM), 2
nterms_defm(), 9

print_stats (DEFM), 2

rule_constrain_support (defm_terms), 6
rule_not_one_to_zero (defm_terms), 6

set_counter_info (get_counters), 8
set_counters_names (get_counters), 8
sim_defm, 15
stats4::mle, 12, 13
summary_table (logodds), 12

td_formula (defm_terms), 6
td_generic (defm_terms), 6
td_logit_intercept (defm_terms), 6
td_ones (defm_terms), 6
terms_defm (defm_terms), 6
texreg_fancy (logodds), 12

valentesns, 15
valentesnsList (valentesns), 15

17

	DEFM
	defm-names
	defm_terms
	get_counters
	get_stats
	loglike_defm
	logodds
	motif_census
	sim_defm
	valentesns
	Index

