The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

An R Package for Density Ratio Estimation

Koji MAKIYAMA (@hoxo-m)

2019-06-30

1. Overview

Density ratio estimation is described as follows: for given two data samples \(x1\) and \(x2\) from unknown distributions \(p(x)\) and \(q(x)\) respectively, estimate

\[ w(x) = \frac{p(x)}{q(x)} \]

where \(x1\) and \(x2\) are \(d\)-dimensional real numbers.

The estimated density ratio function \(w(x)\) can be used in many applications such as anomaly detection [Hido et al. 2011], change-point detection [Liu et al. 2013], and covariate shift adaptation [Sugiyama et al. 2007]. Other useful applications about density ratio estimation were summarized by [Sugiyama et al. 2012].

The package densratio provides a function densratio() that returns an object with a method to estimate density ratio as compute_density_ratio().

For example,

set.seed(3)
x1 <- rnorm(200, mean = 1, sd = 1/8)
x2 <- rnorm(200, mean = 1, sd = 1/2)

library(densratio)
densratio_obj <- densratio(x1, x2)

The function densratio() estimates the density ratio of \(p(x)\) to \(q(x)\), \[ w(x) = \frac{p(x)}{q(x)} = \frac{\rm{Norm}(1, 1/8)}{\rm{Norm}(1, 1/2)} \] and provides a function to compute estimated density ratio.

The densratio object has a function compute_density_ratio() that can compute density ratio \(\hat{w}(x) \simeq p(x)/q(x)\) for any \(d\)-dimensional input \(x\) (here \(d=1\)).

new_x <- seq(0, 2, by = 0.05)
w_hat <- densratio_obj$compute_density_ratio(new_x)

plot(new_x, w_hat, pch=19)

In this case, the true density ratio \(w(x) = p(x)/q(x) = \rm{Norm}(1, 1/8) / \rm{Norm}(1, 1/2)\) is known. So we can compare \(w(x)\) with the estimated density ratio \(\hat{w}(x)\).

true_density_ratio <- function(x) dnorm(x, 1, 1/8) / dnorm(x, 1, 1/2)

plot(true_density_ratio, xlim=c(0, 2), lwd=2, col="red", xlab = "x", ylab = "Density Ratio")
plot(densratio_obj$compute_density_ratio, xlim=c(0, 2), lwd=2, col="green", add=TRUE)
legend("topright", legend=c(expression(w(x)), expression(hat(w)(x))), col=2:3, lty=1, lwd=2, pch=NA)

2. How to Install

You can install the densratio package from CRAN.

install.packages("densratio")

You can also install the package from GitHub.

install.packages("remotes") # If you have not installed "remotes" package
remotes::install_github("hoxo-m/densratio")

The source code for densratio package is available on GitHub at

3. Details

3.1. Basics

The package provides densratio(). The function returns an object that has a function to compute estimated density ratio.

For data samples x1 and x2,

In this case, densratio_obj$compute_density_ratio() can compute estimated density ratio.

3.2. Methods

densratio() has method argument that you can pass "uLSIF", "RuSLIF", or "KLIEP".

The methods assume that density ratio are represented by linear model:

\[ w(x) = \theta_1 K(x, c_1) + \theta_2 K(x, c_2) + ... + \theta_b K(x, c_b) \]

where

\[ K(x, c) = \exp\left(-\frac{\|x - c\|^2}{2 \sigma ^ 2}\right) \]

is the Gaussian (RBF) kernel.

densratio() performs the following:

3.3. Result and Arguments

You can display information of densratio objects. Moreover, you can change some conditions to specify arguments of densratio().

## 
## Call:
## densratio(x1 = x1, x2 = x2, method = "uLSIF")
## 
## Kernel Information:
##   Kernel type:  Gaussian 
##   Number of kernels:  100 
##   Bandwidth (sigma):  0.1 
##   Centers:  num [1:100, 1] 0.907 1.093 1.18 1.136 1.046 ...
## 
## Kernel Weights:
##   num [1:100] 0.067455 0.040045 0.000459 0.016849 0.067084 ...
## 
## Regularization Parameter (lambda):  1 
## 
## Function to Estimate Density Ratio:
##   compute_density_ratio()

4. Multi Dimensional Data Samples

So far, the input data samples x1 and x2 were one dimensional. densratio() allows to input multidimensional data samples as matrix, as long as their dimensions are the same.

For example,

library(densratio)
library(mvtnorm)

set.seed(3)
x1 <- rmvnorm(300, mean = c(1, 1), sigma = diag(1/8, 2))
x2 <- rmvnorm(300, mean = c(1, 1), sigma = diag(1/2, 2))

densratio_obj_d2 <- densratio(x1, x2)
densratio_obj_d2
## 
## Call:
## densratio(x1 = x1, x2 = x2, method = "uLSIF")
## 
## Kernel Information:
##   Kernel type:  Gaussian 
##   Number of kernels:  100 
##   Bandwidth (sigma):  0.316 
##   Centers:  num [1:100, 1:2] 1.257 0.758 1.122 1.3 1.386 ...
## 
## Kernel Weights:
##   num [1:100] 0.0756 0.0986 0.059 0.0797 0.0421 ...
## 
## Regularization Parameter (lambda):  0.3162278 
## 
## Function to Estimate Density Ratio:
##   compute_density_ratio()

In this case, as well, we can compare the true density ratio with the estimated density ratio.

true_density_ratio <- function(x) {
  dmvnorm(x, mean = c(1, 1), sigma = diag(1/8, 2)) /
    dmvnorm(x, mean = c(1, 1), sigma = diag(1/2, 2))
}

N <- 20
range <- seq(0, 2, length.out = N)
input <- expand.grid(range, range)
w_true <- matrix(true_density_ratio(input), nrow = N)
w_hat <- matrix(densratio_obj_d2$compute_density_ratio(input), nrow = N)

par(mfrow = c(1, 2))
contour(range, range, w_true, main = "True Density Ratio")
contour(range, range, w_hat, main = "Estimated Density Ratio")

References

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.