The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

From Design to Dataframe

Maximilian M. Rabe & Reinhold Kliegl

2019-09-28

1 Setup

2 Experimental Design(s)

In an experimental design, we distinguish between random and fixed factors. The “levels” of the random factors are quasi-random samples from a population of persons (subjects) or material (items). To avoid confusion with levels of fixed factors we will refer to levels of random factors as instances. For fixed factors, usual (quasi-)experimental ones, we must specify whether they are between- or within-subjects and between- or within-items. For a given fixed factor all four combinations are possible in principle. We also need to decide on a counterbalancing scheme; a common example is a Latin square applied to all or a subset of the factors.

In this vignette, we illustrate how to set up an experiment using subject (Subj) and item (Item) as random factors. In this fictive experiment, the words of a text are presented serially one at a time at a slow, medium, or high rate (i.e., fixed factor Speed with three levels) at the center of the screen. A second factor is cognitive load varying whether subjects have keep six digits in memory while reading or not (i.e., fixed factor Load with two levels yes and no).

Typically, in such an experiment, (1) each subject reads different texts (Item) in the 2 x 3 experimental conditions; (2) each subject reads the same number of texts in each condition; (3) across subjects each text (item) is presented equally often in the six experimental conditions. The final example in this vignette implements this design. However, for didactic reasons, we first show how within/between-subject and within/between-item features of the factors are specified without counterbalancing. These designs are preferred if repeated exposure to the same stimuli in an experimental condition does not have any confounding effects on the measure.

2.1 Complete within-subject and within-item design; no counterbalancing

In the first version of the experimental design, each subject sees each text in each of 2 x 3 experimental conditions. Thus, the two fixed factors Speed and Load are both within-subject and within-item. A minimum of six subjects and six texts is required for a complete within-subject/within-item design. We summarize the design with the design formula:

Load(2) x Speed(3) x 6 Item x 6 Subj

This is a completely crossed design. Note the difference between specification of levels for fixed and instances for random factors. The product of numbers in the formula informs about the number of observations generated by the design. In this case: 216 observations.

design1 <- 
  fixed.factor("Speed", levels=c("slow", "medium", "fast")) +
  fixed.factor("Load",  levels=c("yes", "no")) +
  random.factor("Subj", instances=6) +    
  random.factor("Item", instances=6)    


codes1 <- arrange(design.codes(design1), Subj, Item)[c(3, 4, 2, 1)]
codes1
## # A tibble: 216 × 4
##    Speed  Load  Item  Subj 
##    <fct>  <fct> <fct> <fct>
##  1 slow   yes   Item1 Subj1
##  2 medium yes   Item1 Subj1
##  3 fast   yes   Item1 Subj1
##  4 slow   no    Item1 Subj1
##  5 medium no    Item1 Subj1
##  6 fast   no    Item1 Subj1
##  7 slow   yes   Item2 Subj1
##  8 medium yes   Item2 Subj1
##  9 fast   yes   Item2 Subj1
## 10 slow   no    Item2 Subj1
## # ℹ 206 more rows
tail(codes1, 10)
## # A tibble: 10 × 4
##    Speed  Load  Item  Subj 
##    <fct>  <fct> <fct> <fct>
##  1 fast   yes   Item5 Subj6
##  2 slow   no    Item5 Subj6
##  3 medium no    Item5 Subj6
##  4 fast   no    Item5 Subj6
##  5 slow   yes   Item6 Subj6
##  6 medium yes   Item6 Subj6
##  7 fast   yes   Item6 Subj6
##  8 slow   no    Item6 Subj6
##  9 medium no    Item6 Subj6
## 10 fast   no    Item6 Subj6
#xtabs( ~ Subj + Item + Load + Speed, codes1)
xtabs(~ Load + Speed, codes1)
##      Speed
## Load  slow medium fast
##   yes   36     36   36
##   no    36     36   36
xtabs(~ Subj + Load + Speed, codes1)
## , , Speed = slow
## 
##        Load
## Subj    yes no
##   Subj1   6  6
##   Subj2   6  6
##   Subj3   6  6
##   Subj4   6  6
##   Subj5   6  6
##   Subj6   6  6
## 
## , , Speed = medium
## 
##        Load
## Subj    yes no
##   Subj1   6  6
##   Subj2   6  6
##   Subj3   6  6
##   Subj4   6  6
##   Subj5   6  6
##   Subj6   6  6
## 
## , , Speed = fast
## 
##        Load
## Subj    yes no
##   Subj1   6  6
##   Subj2   6  6
##   Subj3   6  6
##   Subj4   6  6
##   Subj5   6  6
##   Subj6   6  6
xtabs(~ Item + Load + Speed, codes1)
## , , Speed = slow
## 
##        Load
## Item    yes no
##   Item1   6  6
##   Item2   6  6
##   Item3   6  6
##   Item4   6  6
##   Item5   6  6
##   Item6   6  6
## 
## , , Speed = medium
## 
##        Load
## Item    yes no
##   Item1   6  6
##   Item2   6  6
##   Item3   6  6
##   Item4   6  6
##   Item5   6  6
##   Item6   6  6
## 
## , , Speed = fast
## 
##        Load
## Item    yes no
##   Item1   6  6
##   Item2   6  6
##   Item3   6  6
##   Item4   6  6
##   Item5   6  6
##   Item6   6  6

The first command generates the list design1. The function design.codes() extracts the generated variable coding as a dataframe in the tibble format. After resorting and rearranging the variables, the code is converted to the long format (i.e, N=216). Obviously, having subjects read each text six times may lead to practice effects that would need to be taken into account by counterbalancing the order in which texts are presented across subjects.

2.2 Speed within-subject/within-item, Text within-subject/between-item; no counterbalancing

In the second example, we replace the factor Load with a factor Type of text. We assume that Items 1 to 3 are simple texts and items 4 to 6 are complex texts. Subjects read both simple and complex texts; Type of text is a within-subject factor. Each text (item), however is either simple or complex. Thus, Type is a between-item factor in this design.

Such a design is realized by specifying Type with the groups argument in the corresponding random.factor() command. We generate 3 items (instances) within each of the two levels of the factor Type, that is, as in the first example, we will have again six different items.

Design formula:

Type(2) x Speed(3) x 3 Item[Type] x 6 Subj

We read the item-part of this formula: “3 Items nested under levels of Type.” The total number of different instances for the random factor Item is 3 items x 2 levels of Type, that is 6 items. The design generates 108 observations; it is no longer completely crossed.

design2 <- fixed.factor("Speed", levels=c("slow", "medium", "fast")) +
  fixed.factor("Type",  levels=c("simple", "complex")) +
  random.factor("Subj", instances=6) +   
  random.factor("Item", groups="Type", instances=3)

codes2 <- arrange(design.codes(design2), Subj, Item)[c(3, 4, 1, 2)]
codes2
## # A tibble: 108 × 4
##    Speed  Type    Subj  Item 
##    <fct>  <fct>   <fct> <fct>
##  1 slow   complex Subj1 Item1
##  2 medium complex Subj1 Item1
##  3 fast   complex Subj1 Item1
##  4 slow   complex Subj1 Item2
##  5 medium complex Subj1 Item2
##  6 fast   complex Subj1 Item2
##  7 slow   complex Subj1 Item3
##  8 medium complex Subj1 Item3
##  9 fast   complex Subj1 Item3
## 10 slow   simple  Subj1 Item4
## # ℹ 98 more rows
xtabs(~ Item + Type, codes2)
##        Type
## Item    simple complex
##   Item1      0      18
##   Item2      0      18
##   Item3      0      18
##   Item4     18       0
##   Item5     18       0
##   Item6     18       0
xtabs(~ Subj + Type, codes2)
##        Type
## Subj    simple complex
##   Subj1      9       9
##   Subj2      9       9
##   Subj3      9       9
##   Subj4      9       9
##   Subj5      9       9
##   Subj6      9       9
#xtabs( ~ Subj + Item + Type + Speed, codes2)
#xtabs(~ Type + Speed, codes2)
#xtabs(~ Subj + Type + Speed, codes2)
#xtabs(~ Item + Type + Speed, codes2)

The tables shows that for Items 1 to 3 all available codes for the factor Type are complex and for Items 4 to 6 all codes are simple. Thus, Type is varied between items. Each item is read three times (three levels of Speed) by six subjects. yielding 18 codes in each of the 6 non-zero cells of the Item x Type table.

Conversely, for all six subjects codes are available for simple and complex items. Thus, Type is varied within subjects. Each text is read three times (i.e., the three speed rates). Therefore, there are 3 texts x 3 levels of speed = 9 codes in each cell of the Subj x Type table.

The command to specify Speed as between_item factor would be:

random.factor("Item", groups="Speed", instances=2)
```
We need 2 instances within each of the 3 levels of _Speed_ to obtain 6 items in total. 

**Design formula:**
```
Type(2) x Speed(3) x 2 Item[Speed] x 6 Subj

The total number of items is 2 x 3 = 6. This design generates 72 observations.

2.3 Age between-subject/within-item, Speed within-subject/within-item; no counterbalancing

In this example, we replace the factor Load (or Type) with a between-subject factor Age, assuming that half the subjects are young and the other half old.

design3 <- 
  fixed.factor("Speed", levels=c("slow", "medium", "fast")) +
  fixed.factor("Age",  levels=c("young", "old")) +
  random.factor("Item", instances=6) +
  random.factor("Subj", groups="Age", instances=3) 

codes3 <- arrange(design.codes(design3), Subj, Item)[c(4, 3, 2, 1)]
codes3
## # A tibble: 108 × 4
##    Age   Speed  Subj  Item 
##    <fct> <fct>  <fct> <fct>
##  1 old   slow   Subj1 Item1
##  2 old   medium Subj1 Item1
##  3 old   fast   Subj1 Item1
##  4 old   slow   Subj1 Item2
##  5 old   medium Subj1 Item2
##  6 old   fast   Subj1 Item2
##  7 old   slow   Subj1 Item3
##  8 old   medium Subj1 Item3
##  9 old   fast   Subj1 Item3
## 10 old   fast   Subj1 Item4
## # ℹ 98 more rows
xtabs(~ Subj + Age, codes3)
##        Age
## Subj    young old
##   Subj1     0  18
##   Subj2     0  18
##   Subj3     0  18
##   Subj4    18   0
##   Subj5    18   0
##   Subj6    18   0
xtabs(~ Item + Age, codes3)
##        Age
## Item    young old
##   Item1     9   9
##   Item2     9   9
##   Item3     9   9
##   Item4     9   9
##   Item5     9   9
##   Item6     9   9
#xtabs( ~ Subj + Item + Age + Speed, codes3)
#xtabs( ~ Subj + Age + Speed, codes3)

The tables show that subjects 1 to 3 are old and subjects 4 to 6 are young (i.e., Age is a between-subject factor) and that all items are read by young and old subjects (i.e., Age is a within-item factor). The formula for this design can be written as: Age(2) x Speed(3) x 6 Item x 3 Subj[Age], yielding 108 observations.

Note that instances specifies the number of instances within groups. To generate code for 25 young and 25 old subjects (i.e., total N=50), we set instances=25.

Design formula:

Age(2) x Speed(3) x 6 Item x 25 Subj[Age] 

The total number of subjects is 25 x 2 = 50. This design generates 900 observations.

2.4 Age between-subject/within-item, Speed between-subject/within-item; no counterbalancing

Continuing with the last example, it may also make sense to vary not only Age, but als Speed between subjects. Thus, every subject is either old or young (i.e., a quasi-experimental factor) and is randomly assigned to one of the three Speed conditions (i.e., an experimental factor). For this specification the two factors are included as a vector for the groups argument. For the minimal design we need only 1 instance because 2 x 3 = 6. This means we generate codes for 1 subject in each of the six design cells, but each subjects reads each text in this condition (i.e., there are six measures for each subject.) To get code for 10 subjects in each of the 2 x 3 = 6 design cells (i.e., a total of 60 subjects), we set instances=10.

Design formula:

Age(2) x Speed(3) x 6 Item x 10 Subj[Age x Speed]

The total number of subjects is 10 x 2 x 3 = 60. This design generates 360 observations.

design4 <- 
  fixed.factor("Speed", levels=c("slow", "medium", "fast")) +
  fixed.factor("Age",  levels=c("simple", "complex")) +
  random.factor("Subj", groups=c("Age", "Speed"), instances=10) +
  random.factor("Item", instances=6)   

codes4 <- arrange(design.codes(design4), Subj, Item)[c(3, 4, 2, 1)]
codes4
## # A tibble: 360 × 4
##    Speed Age     Item  Subj  
##    <fct> <fct>   <fct> <fct> 
##  1 fast  complex Item1 Subj01
##  2 fast  complex Item2 Subj01
##  3 fast  complex Item3 Subj01
##  4 fast  complex Item4 Subj01
##  5 fast  complex Item5 Subj01
##  6 fast  complex Item6 Subj01
##  7 fast  complex Item1 Subj02
##  8 fast  complex Item2 Subj02
##  9 fast  complex Item3 Subj02
## 10 fast  complex Item4 Subj02
## # ℹ 350 more rows
xtabs( ~ Subj + Age, codes4)
##         Age
## Subj     simple complex
##   Subj01      0       6
##   Subj02      0       6
##   Subj03      0       6
##   Subj04      0       6
##   Subj05      0       6
##   Subj06      0       6
##   Subj07      0       6
##   Subj08      0       6
##   Subj09      0       6
##   Subj10      0       6
##   Subj11      0       6
##   Subj12      0       6
##   Subj13      0       6
##   Subj14      0       6
##   Subj15      0       6
##   Subj16      0       6
##   Subj17      0       6
##   Subj18      0       6
##   Subj19      0       6
##   Subj20      0       6
##   Subj21      0       6
##   Subj22      0       6
##   Subj23      0       6
##   Subj24      0       6
##   Subj25      0       6
##   Subj26      0       6
##   Subj27      0       6
##   Subj28      0       6
##   Subj29      0       6
##   Subj30      0       6
##   Subj31      6       0
##   Subj32      6       0
##   Subj33      6       0
##   Subj34      6       0
##   Subj35      6       0
##   Subj36      6       0
##   Subj37      6       0
##   Subj38      6       0
##   Subj39      6       0
##   Subj40      6       0
##   Subj41      6       0
##   Subj42      6       0
##   Subj43      6       0
##   Subj44      6       0
##   Subj45      6       0
##   Subj46      6       0
##   Subj47      6       0
##   Subj48      6       0
##   Subj49      6       0
##   Subj50      6       0
##   Subj51      6       0
##   Subj52      6       0
##   Subj53      6       0
##   Subj54      6       0
##   Subj55      6       0
##   Subj56      6       0
##   Subj57      6       0
##   Subj58      6       0
##   Subj59      6       0
##   Subj60      6       0
xtabs( ~ Subj + Speed, codes4)
##         Speed
## Subj     slow medium fast
##   Subj01    0      0    6
##   Subj02    0      0    6
##   Subj03    0      0    6
##   Subj04    0      0    6
##   Subj05    0      0    6
##   Subj06    0      0    6
##   Subj07    0      0    6
##   Subj08    0      6    0
##   Subj09    0      6    0
##   Subj10    0      6    0
##   Subj11    0      6    0
##   Subj12    0      6    0
##   Subj13    0      6    0
##   Subj14    0      0    6
##   Subj15    0      0    6
##   Subj16    0      0    6
##   Subj17    0      6    0
##   Subj18    0      6    0
##   Subj19    0      6    0
##   Subj20    0      6    0
##   Subj21    6      0    0
##   Subj22    6      0    0
##   Subj23    6      0    0
##   Subj24    6      0    0
##   Subj25    6      0    0
##   Subj26    6      0    0
##   Subj27    6      0    0
##   Subj28    6      0    0
##   Subj29    6      0    0
##   Subj30    6      0    0
##   Subj31    0      0    6
##   Subj32    0      0    6
##   Subj33    0      0    6
##   Subj34    0      0    6
##   Subj35    0      0    6
##   Subj36    0      0    6
##   Subj37    0      0    6
##   Subj38    0      0    6
##   Subj39    0      0    6
##   Subj40    0      0    6
##   Subj41    0      6    0
##   Subj42    0      6    0
##   Subj43    0      6    0
##   Subj44    0      6    0
##   Subj45    6      0    0
##   Subj46    6      0    0
##   Subj47    6      0    0
##   Subj48    0      6    0
##   Subj49    0      6    0
##   Subj50    0      6    0
##   Subj51    0      6    0
##   Subj52    0      6    0
##   Subj53    0      6    0
##   Subj54    6      0    0
##   Subj55    6      0    0
##   Subj56    6      0    0
##   Subj57    6      0    0
##   Subj58    6      0    0
##   Subj59    6      0    0
##   Subj60    6      0    0
xtabs( ~ Item + Age, codes4)
##        Age
## Item    simple complex
##   Item1     30      30
##   Item2     30      30
##   Item3     30      30
##   Item4     30      30
##   Item5     30      30
##   Item6     30      30
xtabs( ~ Item + Speed, codes4)
##        Speed
## Item    slow medium fast
##   Item1   20     20   20
##   Item2   20     20   20
##   Item3   20     20   20
##   Item4   20     20   20
##   Item5   20     20   20
##   Item6   20     20   20
#xtabs( ~ Subj + Item + Age + Speed, codes4)

The tables show that Age and Speed vary indeed between subjects and within items.

3 Counterbalancing Speed and Load

In this final example, we modify the very first example such that each subject reads one different texts in each of the six conditions, respecting the constraint that design cells are counterbalanced (i.e., each text is read equally often in each condition, each subject reads the same number of texts in each condition).

For this implementation we (1) add a third random factor defined as Subj-by-Item and (2) specify factors Speed and Load as varying between Subj-by-Item.

We start with the minimal design of 6 subjects reading 6 texts.

Design formula:

Speed(3) x Load(2) x 1 Item[Speed x Load] x 1 Subj[Speed x Load] x 
(3 x 2) Item-by-Subj[Speed x Load x Item[Speed x Load] + Subj[Speed x Load]] 

We have 1 item and 1 subject nested under the levels of the Speed x Load design. There are 36 instances of the random factor resulting from the multiplication of the random factors Item and Subj. The design generates 3 x 2 x 1 x 1 x (3 x 2) 36 observations.

design5 <- 
  fixed.factor("Speed", levels=c("slow", "medium", "fast")) +
  fixed.factor("Load",  levels=c("simple", "complex")) +
  random.factor("Subj", instances=1) + 
  random.factor("Item", instances=1) +
  random.factor(c("Subj", "Item"), groups=c("Speed", "Load"))


codes5 <- arrange(design.codes(design5), Subj, Item)[c(3, 4, 1, 2)]
codes5
## # A tibble: 36 × 4
##    Speed  Load    Subj  Item 
##    <fct>  <fct>   <fct> <fct>
##  1 slow   simple  Subj1 Item1
##  2 slow   complex Subj1 Item2
##  3 medium simple  Subj1 Item3
##  4 medium complex Subj1 Item4
##  5 fast   simple  Subj1 Item5
##  6 fast   complex Subj1 Item6
##  7 slow   complex Subj2 Item1
##  8 medium simple  Subj2 Item2
##  9 medium complex Subj2 Item3
## 10 fast   simple  Subj2 Item4
## # ℹ 26 more rows
xtabs(~ Subj + Speed + Load, codes5)
## , , Load = simple
## 
##        Speed
## Subj    slow medium fast
##   Subj1    1      1    1
##   Subj2    1      1    1
##   Subj3    1      1    1
##   Subj4    1      1    1
##   Subj5    1      1    1
##   Subj6    1      1    1
## 
## , , Load = complex
## 
##        Speed
## Subj    slow medium fast
##   Subj1    1      1    1
##   Subj2    1      1    1
##   Subj3    1      1    1
##   Subj4    1      1    1
##   Subj5    1      1    1
##   Subj6    1      1    1
xtabs(~ Item + Speed + Load, codes5)
## , , Load = simple
## 
##        Speed
## Item    slow medium fast
##   Item1    1      1    1
##   Item2    1      1    1
##   Item3    1      1    1
##   Item4    1      1    1
##   Item5    1      1    1
##   Item6    1      1    1
## 
## , , Load = complex
## 
##        Speed
## Item    slow medium fast
##   Item1    1      1    1
##   Item2    1      1    1
##   Item3    1      1    1
##   Item4    1      1    1
##   Item5    1      1    1
##   Item6    1      1    1
xtabs( ~ Subj + Item + Load + Speed, codes1)
## , , Load = yes, Speed = slow
## 
##        Item
## Subj    Item1 Item2 Item3 Item4 Item5 Item6
##   Subj1     1     1     1     1     1     1
##   Subj2     1     1     1     1     1     1
##   Subj3     1     1     1     1     1     1
##   Subj4     1     1     1     1     1     1
##   Subj5     1     1     1     1     1     1
##   Subj6     1     1     1     1     1     1
## 
## , , Load = no, Speed = slow
## 
##        Item
## Subj    Item1 Item2 Item3 Item4 Item5 Item6
##   Subj1     1     1     1     1     1     1
##   Subj2     1     1     1     1     1     1
##   Subj3     1     1     1     1     1     1
##   Subj4     1     1     1     1     1     1
##   Subj5     1     1     1     1     1     1
##   Subj6     1     1     1     1     1     1
## 
## , , Load = yes, Speed = medium
## 
##        Item
## Subj    Item1 Item2 Item3 Item4 Item5 Item6
##   Subj1     1     1     1     1     1     1
##   Subj2     1     1     1     1     1     1
##   Subj3     1     1     1     1     1     1
##   Subj4     1     1     1     1     1     1
##   Subj5     1     1     1     1     1     1
##   Subj6     1     1     1     1     1     1
## 
## , , Load = no, Speed = medium
## 
##        Item
## Subj    Item1 Item2 Item3 Item4 Item5 Item6
##   Subj1     1     1     1     1     1     1
##   Subj2     1     1     1     1     1     1
##   Subj3     1     1     1     1     1     1
##   Subj4     1     1     1     1     1     1
##   Subj5     1     1     1     1     1     1
##   Subj6     1     1     1     1     1     1
## 
## , , Load = yes, Speed = fast
## 
##        Item
## Subj    Item1 Item2 Item3 Item4 Item5 Item6
##   Subj1     1     1     1     1     1     1
##   Subj2     1     1     1     1     1     1
##   Subj3     1     1     1     1     1     1
##   Subj4     1     1     1     1     1     1
##   Subj5     1     1     1     1     1     1
##   Subj6     1     1     1     1     1     1
## 
## , , Load = no, Speed = fast
## 
##        Item
## Subj    Item1 Item2 Item3 Item4 Item5 Item6
##   Subj1     1     1     1     1     1     1
##   Subj2     1     1     1     1     1     1
##   Subj3     1     1     1     1     1     1
##   Subj4     1     1     1     1     1     1
##   Subj5     1     1     1     1     1     1
##   Subj6     1     1     1     1     1     1

Number of subjects and items increase by six with each increment of the value of the instances argument. For example,

  ...
  random.factor("Subj", instances=10) + 
  random.factor("Item", instances= 4) +
  ...

will generate codes for 60 subjects and 24 texts.

design6 <- 
  fixed.factor("Speed", levels=c("slow", "medium", "fast")) +
  fixed.factor("Load",  levels=c("simple", "complex")) +
  random.factor("Subj", instances=10) + 
  random.factor("Item", instances=4) +
  random.factor(c("Subj", "Item"), groups=c("Speed", "Load"))


codes6 <- arrange(design.codes(design6), Subj, Item)[c(3, 4, 1, 2)]
codes6
## # A tibble: 1,440 × 4
##    Speed  Load    Subj   Item  
##    <fct>  <fct>   <fct>  <fct> 
##  1 slow   simple  Subj01 Item01
##  2 slow   complex Subj01 Item02
##  3 medium simple  Subj01 Item03
##  4 medium complex Subj01 Item04
##  5 fast   simple  Subj01 Item05
##  6 fast   complex Subj01 Item06
##  7 slow   simple  Subj01 Item07
##  8 slow   complex Subj01 Item08
##  9 medium simple  Subj01 Item09
## 10 medium complex Subj01 Item10
## # ℹ 1,430 more rows
length(unique(codes6$Subj))
## [1] 60
length(unique(codes6$Item))
## [1] 24
length(unique(paste(codes6$Subj, codes6$Item)))
## [1] 1440

Design formula:

Speed(3) x Load(2) x 4 Item[Speed x Load] x 10 Subj[Speed x Load] x 
(3 x 2) Item-by-Subj[Speed x Load x Item[Speed x Load]  x  Subj[Speed x Load]] 

The total number of items is 4 x 3 x 2 = 24; the total number of subjects is 10 x 3 x 2 = 60. The total number of instances of Item-by-Subj is 3 x 2 x (3 x 2) x 4 x 10 = 1440. The design yields 3 x 2 x 4 x 10 x (3 x 2) = 1440 observations.

4 Outlook

The examples illustrate some of the basic functionalities. The generalization to a larger number of fixed or random factors and number of levels associated with them should be clear.

The codes generated with the above specifications can be extended with different assignment of presentation orders according to latin.square (default), random.order, or williams. These options will be described in the second vignette.

The function also allows the specifations of fixed effects, variance and correlation parameters to generate input suitable for linear (mixed) models and the determination of statistical power via simulations from the model. The third vignette is a tutorial about these functionalities.

5 Appendix

5.1 Acknowledgement

The development of this package was supported by German Research Foundation (DFG)/SFB 1287 Limits of variability in language and Center for Interdisciplinary Research, Bielefeld (ZiF)/Cooperation Group Statistical models for psychological and linguistic data.

5.2 Packages

sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur ... 10.16
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] designr_0.1.13 dplyr_1.1.2   
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.10      nloptr_2.0.3     pillar_1.9.0     bslib_0.4.2     
##  [5] compiler_4.2.1   jquerylib_0.1.4  tools_4.2.1      boot_1.3-28.1   
##  [9] digest_0.6.31    lme4_1.1-33      jsonlite_1.8.4   evaluate_0.20   
## [13] lifecycle_1.0.3  tibble_3.2.1     nlme_3.1-162     lattice_0.21-8  
## [17] pkgconfig_2.0.3  rlang_1.1.0      Matrix_1.5-4     cli_3.6.1       
## [21] rstudioapi_0.14  yaml_2.3.7       xfun_0.39        fastmap_1.1.1   
## [25] knitr_1.42       generics_0.1.3   vctrs_0.6.2      sass_0.4.5      
## [29] grid_4.2.1       tidyselect_1.2.0 glue_1.6.2       R6_2.5.1        
## [33] fansi_1.0.4      rmarkdown_2.21   minqa_1.2.5      magrittr_2.0.3  
## [37] htmltools_0.5.5  MASS_7.3-59      splines_4.2.1    utf8_1.2.3      
## [41] cachem_1.0.7

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.