The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

DexterMST

DexterMST is an R package acting as a companion to dexter and adding facilities to manage and analyze data from multistage tests (MST). It includes functions for importing and managing test data, assessing and improving the quality of data through basic test and item analysis, and fitting an IRT model, all adapted to the peculiarities of MST designs. DexterMST typically works with project database files saved on disk.

Installation

install.packages('dexterMST')

If you encounter a bug, please post a minimal reproducible example on github. We post news and examples on a blog, it’s also the place for general questions.

Example

Here is an example for a simple two-stage test.

library(dexterMST)
library(dplyr)
# start a project
db = create_mst_project(":memory:")

items = data.frame(item_id=sprintf("item%02i",1:70), item_score=1, delta=sort(runif(70,-1,1)))

design = data.frame(item_id=sprintf("item%02i",1:70),
                    module_id=rep(c('M4','M2','M5','M1','M6','M3', 'M7'),each=10))

routing_rules = routing_rules = mst_rules(
 `124` = M1[0:5] --+ M2[0:10] --+ M4, 
 `125` = M1[0:5] --+ M2[11:15] --+ M5,
 `136` = M1[6:10] --+ M3[6:15] --+ M6,
 `137` = M1[6:10] --+ M3[16:20] --+ M7)


scoring_rules = data.frame(
  item_id = rep(items$item_id,2), 
  item_score= rep(0:1,each=nrow(items)),
  response= rep(0:1,each=nrow(items))) # dummy respons
  

db = create_mst_project(":memory:")
add_scoring_rules_mst(db, scoring_rules)

create_mst_test(db,
                test_design = design,
                routing_rules = routing_rules,
                test_id = 'sim_test',
                routing = "all")

We can now plot the design

# plot test designs for all tests in the project
design_plot(db)

We now simulate data:

theta = rnorm(3000)

dat = sim_mst(items, theta, design, routing_rules,'all')
dat$test_id='sim_test'
dat$response=dat$item_score

add_response_data_mst(db, dat)
# IRT, extended nominal response model
f = fit_enorm_mst(db)

head(f)
item_id item_score beta SE_beta
item01 1 -0.9091126 0.0627456
item02 1 -1.0254786 0.0629096
item03 1 -0.9740383 0.0628192
item04 1 -0.8511593 0.0627179
item05 1 -0.8545661 0.0627186
item06 1 -0.7966628 0.0627248
# ability estimates per person
rsp_data = get_responses_mst(db)
abl = ability(rsp_data, parms = f)
head(abl)
booklet_id person_id booklet_score theta
124 1 1 -3.8957687
136 10 18 0.6531690
124 100 14 -0.6131689
124 1000 12 -0.8930060
124 1001 7 -1.6962625
124 1002 9 -1.3464286
# ability estimates without item Item01
abl2 = ability(rsp_data, parms = f, item_id != "item01")

# plausible values
pv = plausible_values(rsp_data, parms = f, nPV = 5)
head(pv)
booklet_id person_id booklet_score PV1 PV2 PV3 PV4 PV5
124 1 1 -2.1173109 -2.8452992 -1.8224958 -2.2535875 -2.7653987
124 100 14 -0.9541693 -0.3218994 -0.5133103 -0.7913669 -0.6746883
124 1000 12 -0.3432901 -1.2258409 -0.6831306 -0.6257580 -1.2091710
124 1001 7 -1.3945366 -1.7253245 -1.6556693 -1.4768176 -1.3666073
124 1002 9 -1.2284339 -1.0867596 -1.2299253 -0.3411735 -0.9039256
124 1003 4 -1.9307668 -2.9527556 -1.7905466 -1.6767628 -2.4335210

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.