The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
dfvad
decomposes value added growth into explanatory
factors. A cost constrained value added function is defined to specify
the production frontier. Industry estimates can also be aggregated using
a weighted average approach.
dfvad
is available from https://github.com/shipei-zeng/dfvad. To install it,
install_github
from the devtools
package can
be helpful.
::install_github("shipei-zeng/dfvad") devtools
If error messages show that the URL cannot be opened, please set the download option before installing it.
options(download.file.method = "libcurl")
If error messages show that schannel failed to receive handshake, please delete the previous package before updating it.
It has also been uploaded to the CRAN repository, which can be downloaded using:
install.packages("dfvad")
value_decom()
for decomposing nominal value added growth
identifies the contributions from efficiency change, growth of primary
inputs, changes in output and input prices, technical progress and
returns to scale.
library(dfvad)
# Use the built-in dataset "mining"
<- value_decom(c("h2","x2"), c("w2","u2"), "y2", "p2", "year", mining)[[1]]
table1 head(table1)
#> period value alpha beta gamma efficiency epsilon tau
#> 1 1991 1.0869517 1.0287049 0.9944262 1.0000000 1.0000000 1.0000000 1.062544
#> 2 1992 0.9960608 0.9523963 0.9874494 1.0000000 1.0000000 1.0000000 1.059140
#> 3 1993 1.0477108 1.0373754 1.0180111 0.9997303 0.9923619 0.9923619 1.000000
#> 4 1994 0.9773035 0.9605188 1.0444275 0.9996838 0.9670585 0.9745018 1.000000
#> 5 1995 1.0545680 0.9842271 1.0168128 0.9999874 1.0000000 1.0340636 1.019052
#> 6 1996 1.1345729 1.0406754 1.0327427 1.0000000 1.0000000 1.0000000 1.055662
#> TFPG
#> 1 1.0625440
#> 2 1.0591398
#> 3 0.9920943
#> 4 0.9741937
#> 5 1.0537516
#> 6 1.0556623
<- value_decom(c("h2","x2"), c("w2","u2"), "y2", "p2", "year", mining)[[2]]
table2 head(table2)
#> period value A B C E T TFP
#> 1 1990 1.000000 1.0000000 1.0000000 1.0000000 1.0000000 1.000000 1.000000
#> 2 1991 1.086952 1.0287049 0.9944262 1.0000000 1.0000000 1.062544 1.062544
#> 3 1992 1.082670 0.9797347 0.9819455 1.0000000 1.0000000 1.125383 1.125383
#> 4 1993 1.134325 1.0163527 0.9996314 0.9997303 0.9923619 1.125383 1.116486
#> 5 1994 1.108580 0.9762259 1.0440425 0.9994142 0.9670585 1.125383 1.087673
#> 6 1995 1.169073 0.9608280 1.0615958 0.9994016 1.0000000 1.146824 1.146138
t_weight()
follows a “bottom up” approach that uses
weighted averages of the sectoral decompositions to provide an
approximate decomposition into explanatory components at the aggregate
level.
library(dfvad)
# Use the built-in dataset "sector"
<- t_weight("y", "p", "industry", "year", "alpha", "beta", "gamma", "epsilon", "tau", sector)[[1]]
table1 head(table1)
#> period value alpha beta gamma epsilon tau TFPG
#> 1 1991 0.9951654 1.004989 0.9878890 0.9996087 0.9868727 1.016024 1.0023647
#> 2 1992 1.0145281 1.015884 0.9869371 0.9987753 0.9962747 1.016905 1.0118834
#> 3 1993 1.0656435 1.034633 1.0128698 1.0002431 1.0011899 1.015434 1.0168858
#> 4 1994 1.0649234 1.007479 1.0291213 1.0001043 1.0029142 1.024013 1.0271072
#> 5 1995 1.0565961 1.020031 1.0378505 1.0010086 0.9871089 1.010072 0.9980697
#> 6 1996 1.0703334 1.019766 1.0212297 0.9998535 1.0097033 1.018044 1.0277682
<- t_weight("y", "p", "industry", "year", "alpha", "beta", "gamma", "epsilon", "tau", sector)[[2]]
table2 head(table2)
#> period value A B C E T TFP
#> 1 1990 1.0000000 1.000000 1.0000000 1.0000000 1.0000000 1.000000 1.000000
#> 2 1991 0.9951654 1.004989 0.9878890 0.9996087 0.9868727 1.016024 1.002365
#> 3 1992 1.0096232 1.020952 0.9749843 0.9983845 0.9831963 1.033200 1.014276
#> 4 1993 1.0758984 1.056311 0.9875322 0.9986272 0.9843662 1.049147 1.031403
#> 5 1994 1.1457494 1.064211 1.0162904 0.9987313 0.9872349 1.074340 1.059361
#> 6 1995 1.2105943 1.085528 1.0547575 0.9997387 0.9745083 1.085161 1.057317
Here is an example to plot the explanatory factors of productivity
(logarithmic indexes). Additional packages such as ggplot2
and reshape2
are required.
library(dfvad)
library(ggplot2)
library(reshape2)
# Get the decomposition result
<- value_decom(c("h2","x2"), c("w2","u2"), "y2", "p2", "year", mining)[[2]]
df # Extract columns and rename
<- data.frame(df[,"period"], log(df[,c("T", "E", "C")]))
df_cmpt colnames(df_cmpt) <- c("year", "lnT", "lnE", "lnC")
<- data.frame(df[,"period"], log(df[,"TFP"]))
df_tfp colnames(df_tfp) <- c("year", "lnTFP")
# Set the colour scheme
<- c("goldenrod1", "seashell4", "red")
palette_a # Convert data into a tidy form
<- melt(df_cmpt, id.vars="year")
df_cmpt_tidy # Plot the components
<- ggplot(df_cmpt_tidy) + geom_bar(aes(x=year, y=value, fill=variable), stat="identity") +
plot_out geom_line(data=df_tfp, aes(x=year,y=lnTFP,color='black'), lwd=0.5) +
ylab('Log Index') + xlab('Year') +
scale_fill_manual("", values=palette_a) +
scale_colour_manual("", values=c('black'='black'), labels = c('lnTFP')) +
scale_x_continuous(breaks = seq(min(df$period), max(df$period), by = 3)) +
theme_classic()
print(plot_out)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.