The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
describe()
to quickly describe a
MultivariateAnalysis
object.viz_ellipses()
to draw tolerance/confidence
ellipses.viz_rows()
and viz_individuals()
gained a
new ellipse
argument to draw tolerance/confidence
ellipses.viz_rows()
and viz_individuals()
gained a
new hull
argument to draw convex hulls.ca()
, mca()
and pca()
gained
a new autodetect
argument to enable/disable automatic of
numeric variables.ca()
, mca()
and pca()
.loadings()
.export()
to create a Zip archive of all results in
CSV format.pcoa()
to compute principal coordinates
analysis.viz_rows()
/viz_individuals()
and
viz_columns()
/viz_variables()
.hightlight
argument of
viz_rows()
/viz_individuals()
and
viz_columns()
/viz_variables()
.MultivariateAnalysis
object.viz_individuals()
and
viz_row()
.viz_individuals()
, viz_row()
,
viz_variables()
and viz_columns()
.viz_individuals()
, viz_row()
,
viz_variables()
and viz_columns()
.predict()
method for MCA.viz_individuals()
, viz_row()
,
viz_variables()
and viz_columns()
only display
labels of the 10 observations contributing the most to the factorial
map.viz_contributions()
displays the expected average
contribution.pca()
gained a new argument to specify supplementary
qualitative variables.plot_*()
methods are now defunct (deprecated in
v0.4.0).cdt()
to compute the complete disjunctive table of
a factor table.burt()
to compute the Burt table of a factor
table.mca()
to compute multiple correspondence
analysis.biplot()
allows to produce a symetric CA biplot.biplot()
.biplot()
....
after required arguments.viz_individuals()
, viz_row()
,
viz_variables()
, viz_columns()
and
biplot()
gained new arguments allowing set the x and y
limits of the plot.screeplot()
to produce a scree plot.viz_*()
methods to replace plot_*()
methods.plot_*()
methods. The internal use of
ggplot2 is poorly interoperable or composable. This
will reduces hard dependencies.rownames()
and colnames()
for S3
generic/method consistency.biplot()
to produce PCA and CA biplots.plot_individuals()
and
plot_variables()
methods for PCA
class.tidy()
and augment()
to get
coordinates in tidy format with extra information.wrap_hull()
to compute convex hull around
coordinates.stat_hull()
(thanks to ggplot2
documentation)plot_rows
and plot_columns()
gained new
arguments allowing to highlight additional information by varying
different graphical elements.get_coordinates()
gained a new argument allowing to
select principal or standard coordinates.plot()
methods for PCA
and
CA
classes.bootstrap()
and jackknife()
methods
for numeric
and integer
vectors.bootstrap()
and jackknife()
methods
for numeric
and integer
vectors.BootstrapVector
and JackknifeVector
classes to store bootstrap and jackknife resampling values (inherit from
base numeric
).build_results()
. When initializing a
MultivariateResults
object with supplementary observations,
the row names of the standard
and
contributions
matrices were incorrect (computation moves
all supplementary points at the end of the results).bootstrap()
for partial bootstrap analysis.BootstrapCA
and BootstrapPCA
: S4
classes to store partial bootstrap analysis.plot_individuals()
and
plot_variables()
to plot_rows()
and
plot_columns()
.plot_eigenvalues()
.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.