The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The dirichletprocess package provides tools for you to build custom Dirichlet process mixture models. You can use the pre-built Normal/Weibull/Beta distributions or create your own following the instructions in the vignette. In as little as four lines of code you can be modelling your data nonparametrically.
You can install the stable release of dirichletprocess from CRAN:
install.packages("dirichletprocess")
You can also install the development build of dirichletprocess from github with:
# install.packages("devtools")
::install_github("dm13450/dirichletprocess") devtools
For a full guide to the package and its capabilities please consult the vignette:
browseVignettes(package = "dirichletprocess")
Dirichlet processes can be used for nonparametric density estimation.
<- faithful$waiting - mean(faithful$waiting)
faithfulTransformed <- faithfulTransformed/sd(faithful$waiting)
faithfulTransformed <- DirichletProcessGaussian(faithfulTransformed)
dp <- Fit(dp, 100, progressBar = FALSE)
dp plot(dp)
Dirichlet processes can also be used to cluster data based on their common distribution parameters.
<- scale(faithful)
faithfulTrans <- DirichletProcessMvnormal(faithfulTrans)
dpCluster <- Fit(dpCluster, 2000, progressBar = FALSE)
dpCluster plot(dpCluster)
For more detailed explanations and examples see the vignette.
I’ve written a number of tutorials:
and some case studies:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.