The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann (2021) "Regularizing Double Machine Learning in Partially Linear Endogenous Models" <doi:10.48550/arXiv.2101.12525> and Emmenegger and Buehlmann (2021) <doi:10.48550/arXiv.2108.13657> "Double Machine Learning for Partially Linear Mixed-Effects Models with Repeated Measurements". First part: our goal is to perform inference for the linear parameter in partially linear models with confounding variables. The standard DML estimator of the linear parameter has a two-stage least squares interpretation, which can lead to a large variance and overwide confidence intervals. We apply regularization to reduce the variance of the estimator, which produces narrower confidence intervals that are approximately valid. Nuisance terms can be flexibly estimated with machine learning algorithms. Second part: our goal is to estimate and perform inference for the linear coefficient in a partially linear mixed-effects model with DML. Machine learning algorithms allows us to incorporate more complex interaction structures and high-dimensional variables.
Version: | 1.0.2 |
Depends: | R (≥ 4.0.0), stats |
Imports: | glmnet, lme4, matrixcalc, methods, splines, randomForest |
Suggests: | testthat (≥ 3.0.0) |
Published: | 2022-02-03 |
DOI: | 10.32614/CRAN.package.dmlalg |
Author: | Corinne Emmenegger [aut, cre], Peter Buehlmann [ths] |
Maintainer: | Corinne Emmenegger <emmenegger at stat.math.ethz.ch> |
License: | GPL (≥ 3) |
URL: | https://gitlab.math.ethz.ch/ecorinne/dmlalg.git |
NeedsCompilation: | no |
Citation: | dmlalg citation info |
Materials: | README NEWS |
CRAN checks: | dmlalg results |
Reference manual: | dmlalg.pdf |
Package source: | dmlalg_1.0.2.tar.gz |
Windows binaries: | r-devel: dmlalg_1.0.2.zip, r-release: dmlalg_1.0.2.zip, r-oldrel: dmlalg_1.0.2.zip |
macOS binaries: | r-release (arm64): dmlalg_1.0.2.tgz, r-oldrel (arm64): dmlalg_1.0.2.tgz, r-release (x86_64): dmlalg_1.0.2.tgz, r-oldrel (x86_64): dmlalg_1.0.2.tgz |
Old sources: | dmlalg archive |
Please use the canonical form https://CRAN.R-project.org/package=dmlalg to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.