The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The dqrng package provides fast random number generators (RNG) with good statistical properties for usage with R. It combines these RNGs with fast distribution functions to sample from uniform, normal or exponential distributions. Both the RNGs and the distribution functions are distributed as C++ header-only library.
Support for the following 64bit RNGs are currently included:
Of these RNGs Xoroshiro128++ is used as default since it is fast, small and has good statistical properties.
Using these RNGs from R is deliberately similar to using R’s build-in RNGs:
dqRNGkind()
is analogue to RNGkind()
and
sets the RNGdqset.seed()
is analogue to set.seed()
and
sets the seeddqrunif()
, dqrnorm()
, and
dqrexp()
are analogue to runif()
,
rnorm()
, and rexp()
and sample from uniform,
normal or exponential distributionsdqsample()
and dqsample.int
are analogue
to sample
and sample.int
for creating random
samples of vectors and vector indicesLet’s look at the classical example of calculating \(\pi\) via simulation. The basic idea is to generate a large number of random points within the unit square. An approximation for \(\pi\) can then be calculated from the ratio of points within the unit circle to the total number of points. A vectorized implementation in R where we can switch the RNG might look like this:
N <- 1e7
piR <- function(n, rng = stats::runif) {
x <- rng(n)
y <- rng(n)
4 * sum(sqrt(x^2 + y^2) < 1.0) / n
}
set.seed(42)
system.time(cat("pi ~= ", piR(N), "\n"))
#> pi ~= 3.140899
#> user system elapsed
#> 0.235 0.068 0.303
Using dqrng is about three times faster:
library(dqrng)
dqset.seed(42)
system.time(cat("pi ~= ", piR(N, rng = dqrng::dqrunif), "\n"))
#> pi ~= 3.141457
#> user system elapsed
#> 0.109 0.064 0.173
Since the calculations add a constant off-set, the speed-up for the RNGs alone has to be even greater:
system.time(stats::runif(N))
#> user system elapsed
#> 0.049 0.020 0.069
system.time(dqrng::dqrunif(N))
#> user system elapsed
#> 0.017 0.012 0.029
Similar for the exponential distribution:
system.time(stats::rexp(N))
#> user system elapsed
#> 0.219 0.019 0.238
system.time(dqrng::dqrexp(N))
#> user system elapsed
#> 0.028 0.012 0.041
And for the normal distribution:
system.time(stats::rnorm(N))
#> user system elapsed
#> 0.173 0.037 0.210
system.time(dqrng::dqrnorm(N))
#> user system elapsed
#> 0.039 0.015 0.054
As well as for sampling with and without replacement:
system.time(for (i in 1:100) sample.int(N, N/100, replace = TRUE))
#> user system elapsed
#> 0.366 0.007 0.373
system.time(for (i in 1:100) dqsample.int(N, N/100, replace = TRUE))
#> user system elapsed
#> 0.014 0.009 0.023
system.time(for (i in 1:100) sample.int(N, N/100))
#> user system elapsed
#> 0.952 0.783 1.735
system.time(for (i in 1:100) dqsample.int(N, N/100))
#> user system elapsed
#> 0.036 0.008 0.044
It is also possible to register the supplied generators as
user-supplied RNGs. This way set.seed()
and
dqset.seed()
influence both (dq)runif
and
(dq)rnorm
in the same way. This is also true for other
r<dist>
functions, but note that rexp
and dqrexp
still give different results:
register_methods()
set.seed(4711); stats::runif(5)
#> [1] 0.3143534 0.7835753 0.1443660 0.1109871 0.6433407
set.seed(4711); dqrng::dqrunif(5)
#> [1] 0.3143534 0.7835753 0.1443660 0.1109871 0.6433407
dqset.seed(4711); stats::rnorm(5)
#> [1] -0.3618122 0.8199887 -0.4075635 0.2073972 -0.8038326
dqset.seed(4711); dqrng::dqrnorm(5)
#> [1] -0.3618122 0.8199887 -0.4075635 0.2073972 -0.8038326
set.seed(4711); stats::rt(5, 10)
#> [1] -0.3196113 -0.4095873 -1.2928241 0.2399470 -0.1068945
dqset.seed(4711); stats::rt(5, 10)
#> [1] -0.3196113 -0.4095873 -1.2928241 0.2399470 -0.1068945
set.seed(4711); stats::rexp(5, 10)
#> [1] 0.0950560698 0.0567150561 0.1541222748 0.2512966671 0.0002175758
set.seed(4711); dqrng::dqrexp(5, 10)
#> [1] 0.03254731 0.06855303 0.06977124 0.02579004 0.07629535
restore_methods()
You can automatically register these methods when loading this
package by setting the option dqrng.register_methods
to
TRUE
, e.g. with
options(dqrng.register_methods=TRUE)
.
For some workflows it is helpful to save and restore the RNG’s type
and state, similar to how .Randome.seed
can be saved and
restored. The function pair dqrng_get_state()
and
dqrng_set_state()
can be used for this task:
(state <- dqrng_get_state())
#> [1] "default" "7442421893577288217" "2933090096537006399"
dqrunif(5)
#> [1] 0.850198175 0.184318214 0.003138956 0.071103977 0.430195275
# many other operations, that could even change the used RNG type
dqrng_set_state(state)
dqrunif(5)
#> [1] 0.850198175 0.184318214 0.003138956 0.071103977 0.430195275
Note that the state is represented by a character vector, since the unsigned 64 and 128 bit integers used by the supported RNGs cannot be represented in R otherwise. Generally this state should be treated as an implementation detail and not manipulated directly.
The RNGs and distributions functions can also be used from C++ at various levels of abstraction. Technically there are three ways to make use of dqrng at the C++ level:
// [[Rcpp::depends(dqrng)]]
together with
Rcpp::sourceCpp()
Rcpp::cppFunction(depends = "dqrng", ...)
LinkingTo: dqrng
Here only the first approach is shown.
The functions available in R directly call corresponding C++
functions. These functions are also available at the C++ level if you
include dqrng.h
. The full list of functions is available
with vignette("cpp-api", package = "dqrng")
. Revisiting the
example of approximating \(\pi\) we can
use:
// [[Rcpp::depends(dqrng)]]
#include <Rcpp.h>
#include <dqrng.h>
using Rcpp::IntegerVector;
using Rcpp::NumericVector;
using Rcpp::sqrt;
using Rcpp::sum;
using dqrng::dqrunif;
// [[Rcpp::export]]
double piCpp(const int n) {
dqrng::dqset_seed(IntegerVector::create(42));
NumericVector x = dqrunif(n);
NumericVector y = dqrunif(n);
NumericVector d = sqrt(x*x + y*y);
return 4.0 * sum(d < 1.0) / n;
}
/*** R
system.time(cat("pi ~= ", piCpp(1e7), "\n"))
*/
Note that in C++ you have to use dqrng::dqset_seed()
,
whereas the analogue function in the R interface is called
dqrng::dqset.seed()
. For sampling with and without
replacement dqrng::dqsample_int()
and
dqrng::dqsample_num()
are the analogue of
dqrng::dqsample.int()
in the R interface:
The RNG wrapper and distributions functions can be used from C++ by
including dqrng_generator.h
and
dqrng_distribution.h
. In order to use these header files,
you have to use at least C++11. You have to link to the BH
package as well to use dqrng’s distribution functions. For example, you
can use the distribution functions from dqrng together with some foreign
64bit RNG. Here a minimal SplitMix generator
is used together with dqrng::normal_distribution
:
#include <Rcpp.h>
// [[Rcpp::depends(dqrng, BH)]]
#include <dqrng_distribution.h>
class SplitMix {
public:
typedef uint64_t result_type;
SplitMix (result_type seed) : state(seed) {};
result_type operator() () {
result_type z = (state += 0x9e3779b97f4a7c15ULL);
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9ULL;
z = (z ^ (z >> 27)) * 0x94d049bb133111ebULL;
return z ^ (z >> 31);
}
void seed(result_type seed) {state = seed;}
static constexpr result_type min() {return 0;};
static constexpr result_type max() {return UINT64_MAX;};
private:
result_type state;
public:
friend std::ostream& operator<<(std::ostream& ost, const SplitMix& e) {
return ost << e.state;
}
friend std::istream& operator>>(std::istream& ist, SplitMix& e) {
return ist >> e.state;
}
};
// [[Rcpp::export]]
Rcpp::NumericVector splitmix_rnorm(const int n, const double mean = 0.0, const double sd = 1.0) {
auto rng = dqrng::generator<SplitMix>(42);
Rcpp::NumericVector result(n);
rng->generate<dqrng::normal_distribution>(result, mean, sd);
return result;
}
/*** R
splitmix_rnorm(10)
system.time(splitmix_rnorm(1e7))
*/
Since SplitMix is a very fast RNG, the speed of this function is
comparable to dqrnorm
. Generally speaking you can use any
C++11 compliant RNG with 64 bit output size. For example, here the 64
bit Threefry engine with 13 rounds from package sitmo is used:
#include <Rcpp.h>
// [[Rcpp::depends(dqrng, BH, sitmo)]]
#include <dqrng_distribution.h>
#include <threefry.h>
// [[Rcpp::export]]
Rcpp::NumericVector threefry_rnorm(const int n, const double mean = 0.0, const double sd = 1.0) {
auto rng = dqrng::generator<sitmo::threefry_13_64>(42);
Rcpp::NumericVector result(n);
rng->generate<dqrng::normal_distribution>(result, mean, sd);
return result;
}
/*** R
threefry_rnorm(10)
system.time(threefry_rnorm(1e7))
*/
Note that for the (recommended) Threefry engine with 20 rounds some
additional integration is provided in the dqrng_threefry.h
header file.
Alternatively, you could combine the included RNGs together with dqrng’s tooling and some other distribution function. For example, this function generates random numbers according to the normal distribution using the standard library from C++11:
#include <random>
#include <Rcpp.h>
// [[Rcpp::depends(dqrng)]]
#include <dqrng_generator.h>
#include <xoshiro.h>
// [[Rcpp::export]]
Rcpp::NumericVector std_rnorm(const int n, const double mean = 0.0, const double sd = 1.0) {
auto rng = dqrng::generator<dqrng::xoroshiro128plusplus>(42);
Rcpp::NumericVector result(n);
rng->generate<std::normal_distribution>(result, mean, sd);
return result;
}
/*** R
std_rnorm(10)
system.time(std_rnorm(1e7))
*/
Typically this is not as fast as dqrnorm
, but the
technique is useful to support distributions not (yet) included in
dqrng. Note however, that the algorithms used for the distributions from
C++11 are implementation defined.
Finally you could directly use the base generators, which are provided as header-only libraries, without dqrng’s tooling. For example, the following function uses the 32 bit PCG variant together with Boost’s normal distribution function:
#include <Rcpp.h>
// [[Rcpp::depends(dqrng, BH)]]
#include <pcg_random.hpp>
#include <boost/random/normal_distribution.hpp>
// [[Rcpp::plugins(cpp11)]]
// [[Rcpp::export]]
Rcpp::NumericVector boost_pcg_rnorm(const int n, const double mean = 0.0, const double sd = 1.0) {
pcg32 rng(42);
boost::random::normal_distribution<double> dist(mean, sd);
Rcpp::NumericVector result(n);
std::generate(result.begin(), result.end(), [&dist, &rng](){return dist(rng);});
return result;
}
/*** R
boost_pcg_rnorm(10)
system.time(boost_pcg_rnorm(1e7))
*/
This is quite fast since
boost::random::normal_distribution
uses the fast Ziggurat
algorithm. For some applications it is necessary to draw random numbers
from multiple distributions with varying parameters. The following
function uses a binomial distribution (from boost.random
)
as well as the normal distribution from dqrng
. The
parameters of the distributions are adjusted for every draw using
<distribution>::param_type
:
#include <Rcpp.h>
// [[Rcpp::depends(dqrng, BH)]]
#include <boost/random/binomial_distribution.hpp>
#include <dqrng_distribution.h>
// [[Rcpp::export]]
Rcpp::NumericMatrix multiple_distributions(int n) {
auto rng = dqrng::generator<dqrng::xoshiro256plusplus>(42);
Rcpp::NumericMatrix out(n, 3);
double p = 0.0;
for (int i = 0; i < n; ++i) {
p = double(i) / double(n);
out(i,0) = rng->variate<boost::random::binomial_distribution<int>>(1, p);
out(i,1) = rng->variate<dqrng::normal_distribution>(p, 1.0);
out(i,2) = rng->variate<dqrng::normal_distribution>(4.0, 3.0 - p);
}
Rcpp::colnames(out) = Rcpp::CharacterVector::create("Bernoulli", "Normal1", "Normal2");
return out;
}
/*** R
multiple_distributions(5)
*/
You may use the class dqrng::random_64bit_accessor
to
use the seeded RNG engine of dqrng
. Please
note that the included RNG will be invalidated if dqRNGkind
is called. You therefore should use this calls only within
functions:
#include <Rcpp.h>
// [[Rcpp::depends(dqrng, BH)]]
#include <boost/random/binomial_distribution.hpp>
#include <dqrng.h>
#include <dqrng_distribution.h>
// [[Rcpp::export]]
Rcpp::NumericMatrix multiple_distributions(int n) {
auto rng = dqrng::random_64bit_accessor{};
Rcpp::NumericMatrix out(n, 3);
double p = 0.0;
for (int i = 0; i < n; ++i) {
p = double(i) / double(n);
out(i,0) = rng.variate<boost::random::binomial_distribution<int>>(1, p);
out(i,1) = rng.variate<dqrng::normal_distribution>(p, 1.0);
out(i,2) = rng.variate<dqrng::normal_distribution>(4.0, 3.0 - p);
}
Rcpp::colnames(out) = Rcpp::CharacterVector::create("Bernoulli", "Normal1", "Normal2");
return out;
}
/*** R
dqRNGkind("Xoshiro256++")
dqset.seed(42)
multiple_distributions(5)
*/
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.