The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This tutorial explains step-by-step the main features of dynamAedes package, a unified modelling framework for invasive Aedes mosquitoes. Users can apply the stochastic, time-discrete and spatially-explicit population dynamical model initially developed in Da Re et al., (2021) for Aedes aegypti and then expanded for other three species: Ae. albopictus, Ae. japonicus and Ae. koreicus Da Re et al., (2022).
The model is driven by temperature, photoperiod and intra-specific larval competition and can be applied to three different spatial scales: punctual, local and regional. These spatial scales consider different degrees of spatial complexity and data availability, by accounting for both active and passive dispersal of the modelled mosquito species as well as for the heterogeneity of input temperature data.
We will describe the uncompressed model application for Ae. albopictus at the punctual and regional scales by using a simulated temperature dataset. The uncompressed model return the number of simulated individuals not only for the three main compartments, i.e. life stages (eggs, juveniles and adults), but also the number of simulated individuals within each sub-compartments, such as 2-days old eggs or host-seeking adult females.
The general structure of the compartments and sub-compartments for the four species can be inspected from the AedeslifeHistoryList
object available in the package.
Eggs | Juveniles | Adults | DiapauseEggs | SubCompartments |
---|---|---|---|---|
new layed egg | 1 day juv | blood fed | new layed degg | SC-1 |
2 day egg | 2 day juv | ovipositing d1 | 2 day degg | SC-2 |
3 day egg | 3 day juv | ovipositing d2 | 3 day degg | SC-3 |
4 day egg | 4 day juv | Host-seeking | 4 day degg | SC-4 |
5 day egg | 5 day juv | new emerged | 5 day degg | SC-5 |
6 day egg | 6 day juv | NA | 6 day degg | SC-6 |
7 day egg | 7 day juv | NA | 7 day degg | SC-7 |
>=8 day egg | 8 day juv | NA | >=8 day degg | SC-8 |
NA | 9 day juv | NA | NA | SC-9 |
NA | 10 day juv | NA | NA | SC-10 |
NA | 11 day juv | NA | NA | SC-11 |
NA | >=12 day juv | NA | NA | SC-12 |
For each species, the sub-compartments are arranges as follows.
Species | Sub.compartments | Eggs | Juveniles | Adults |
---|---|---|---|---|
Ae. aegypti | Sub-compartment 1 | New layed egg | 1 day juv | blood fed |
Ae. aegypti | Sub-compartment 2 | 2 day egg | 2 day juv | ovipositing d1 |
Ae. aegypti | Sub-compartment 3 | 3 day egg | 3 day juv | ovipositing d2 |
Ae. aegypti | Sub-compartment 4 | >= 4 day egg | 4 day juv | Host-seeking |
Ae. aegypti | Sub-compartment 5 | NA | 5 day juv | new emerged |
Ae. aegypti | Sub-compartment 6 | NA | >= 6 day juv | NA |
Species | Sub.compartments | Eggs | Juveniles | Adults | Diapausing.Eggs |
---|---|---|---|---|---|
Ae. albopictus | Sub-compartment 1 | New layed egg | 1 day juv | blood fed | New layed degg |
Ae. albopictus | Sub-compartment 2 | 2 day egg | 2 day juv | ovipositing d1 | 2 day degg |
Ae. albopictus | Sub-compartment 3 | 3 day egg | 3 day juv | ovipositing d2 | 3 day degg |
Ae. albopictus | Sub-compartment 4 | >= 4 day egg | 4 day juv | Host-seeking | >= 4 day degg |
Ae. albopictus | Sub-compartment 5 | NA | 5 day juv | new emerged | NA |
Ae. albopictus | Sub-compartment 6 | NA | >= 6 day juv | NA | NA |
Species | Sub.compartments | Eggs | Juveniles | Adults | Diapausing.Eggs |
---|---|---|---|---|---|
Ae. japonicus or Ae. koreicus | Sub-compartment 1 | New layed egg | 1 day juv | blood fed | New layed degg |
Ae. japonicus or Ae. koreicus | Sub-compartment 2 | 2 day egg | 2 day juv | ovipositing d1 | 2 day degg |
Ae. japonicus or Ae. koreicus | Sub-compartment 3 | 3 day egg | 3 day juv | ovipositing d2 | 3 day degg |
Ae. japonicus or Ae. koreicus | Sub-compartment 4 | 4 day egg | 4 day juv | Host-seeking | 4 day degg |
Ae. japonicus or Ae. koreicus | Sub-compartment 5 | 5 day egg | 5 day juv | new emerged | 5 day degg |
Ae. japonicus or Ae. koreicus | Sub-compartment 6 | 6 day egg | 6 day juv | NA | 6 day degg |
Ae. japonicus or Ae. koreicus | Sub-compartment 7 | 7 day egg | 7 day juv | NA | 7 day degg |
Ae. japonicus or Ae. koreicus | Sub-compartment 8 | >=8 day egg | 8 day juv | NA | >=8 day degg |
Ae. japonicus or Ae. koreicus | Sub-compartment 9 | NA | 9 day juv | NA | NA |
Ae. japonicus or Ae. koreicus | Sub-compartment 10 | NA | 10 day juv | NA | NA |
Ae. japonicus or Ae. koreicus | Sub-compartment 11 | NA | 11 day juv | NA | NA |
Ae. japonicus or Ae. koreicus | Sub-compartment 12 | NA | >=12 day juv | NA | NA |
At the punctual scale, the model only requires a temperature time series, recorded by e.g. a weather station, provided as a numerical matrix (in degree Celsius). For the purpose of this tutorial, we simulate a 1-year long temperature time series and, for the sake of brevity, we will not discuss the chunks of code already presented in other tutorials.
# [1] "en_GB.UTF-8"
365*1 #length of the time series in days
ndays <-set.seed(123)
create_sims(n_reps = 1,
sim_temp <-n = ndays,
central = 16,
sd = 2,
exposure_type = "continuous",
exposure_trend = "cos1", exposure_amp = -1.0,
average_outcome = 12,
outcome_trend = "cos1",
outcome_amp = 0.8,
rr = 1.0055)
# Model settings
## Define the day of introduction (July 1st is day 1)
"2000-07-01"
str <-## Define the end-day of life cycle (August 1st is the last day)
"2000-08-01"
endr <-## Define the number of eggs to be introduced
1000
ie <-## Define the number of model iterations
1 # The higher the number of simulations the better
it <-## Define the number of liters for the larval density-dependent mortality
1
habitat_liters <-## Define latitude and longitude for the diapause process
42
myLat <- 7
myLon <-## Define the number of parallel processes (for sequential iterations set nc=1)
1
cl <-## convert float temperatures to integer
data.frame("Date" = sim_temp[[1]]$date, "temp" = sim_temp[[1]]$x)
df_temp <- t(as.integer(df_temp$temp*1000)[format(as.Date(str)+1,"%j"):format(as.Date(endr)+1,"%j")]) w <-
It is crucial to run the model the model specifying the argument compressed.output = FALSE
. This will return the number of simulated individuals for each sub-compartments.
dynamAedes.m(species="albopictus",
simout <-scale="ws",
jhwv=habitat_liters,
temps.matrix=w,
startd=str,
endd=endr,
n.clusters=cl,
iter=it,
intro.eggs=ie,
compressed.output=FALSE,
lat=myLat,
long=myLon,
verbose=FALSE,
seeding=TRUE)
A first summary of simulations can be obtained with:
summary(simout)
# Summary of dynamAedes simulations:
# ----------------------------------
# Species: Aedes albopictus
# Scale: WEATHER STATION
# Start Date: 2000-07-01
# End Date: 2000-08-01
# Number of Iterations: 1
# Introduced Stage: egg
# Number Introduced: 1000
# Is Output Compressed?: No
# Water in the System: 1 L
# Min days with population: 30
# Max days with population: 30
The simout object is a S4 object where the outputs of the model and related details are saved in different slot. For example, the number of model iterations is saved in:
@n_iterations simout
# [1] 1
The model output, i.e. the number of simulated individuals, is stored in simout@simulation
. For the uncompressed model, simout@simulation
is a list where the first level stores the simulation of different iteration, while the second corresponds to the simulated days in the corresponding iteration. If we inspect the first iteration, we observe that the model has computed length(simout[[1]])
days, since we have started the simulation on the 1st of July and ended on the 1st of August.
length(simout@simulation[[1]])
# [1] 30
The third level corresponds to an array reporting, for a given iteration and a given day, the number of individuals belonging to each compartment (rows) for each sub-compartment (the third dimension of the array, noted as sc1-…-scN in the print). As example, if we inspect the 1st and the 15th day within the first iteration, we obtain a matrix having:
class(simout@simulation[[1]][[1]])
# [1] "array"
@simulation[[1]][[1]] simout
# , , sc1
#
# [,1]
# egg 0
# juvenile 355
# adult 0
# diapause_egg 0
#
# , , sc2
#
# [,1]
# egg 0
# juvenile 0
# adult 0
# diapause_egg 0
#
# , , sc3
#
# [,1]
# egg 0
# juvenile 0
# adult 0
# diapause_egg 0
#
# , , sc4
#
# [,1]
# egg 645
# juvenile 0
# adult 0
# diapause_egg 0
#
# , , sc5
#
# [,1]
# egg 0
# juvenile 0
# adult 0
# diapause_egg 0
#
# , , sc6
#
# [,1]
# egg 0
# juvenile 0
# adult 0
# diapause_egg 0
@simulation[[1]][[15]] simout
# , , sc1
#
# [,1]
# egg 0
# juvenile 82
# adult 5
# diapause_egg 0
#
# , , sc2
#
# [,1]
# egg 48
# juvenile 17
# adult 2
# diapause_egg 0
#
# , , sc3
#
# [,1]
# egg 0
# juvenile 5
# adult 0
# diapause_egg 0
#
# , , sc4
#
# [,1]
# egg 80
# juvenile 1
# adult 1
# diapause_egg 0
#
# , , sc5
#
# [,1]
# egg 0
# juvenile 2
# adult 0
# diapause_egg 0
#
# , , sc6
#
# [,1]
# egg 0
# juvenile 1
# adult 0
# diapause_egg 0
We can use the auxiliary functions of the package to analyse the results. We now compute the interquantile range abundance for the host-seeking sub-compartment of the simulated population using the function adci.
# Retrieve the maximum number of simulated days
max(simout)
dd <-# Compute the inter-quartile of abundances along the iterations
c(0.25,0.50,0.75)
breaks <- 1:dd
ed <- adci(simout, eval_date=ed, breaks=breaks,
hs <-stage="Adults",
sub_stage = "Host-seeking" )
head(hs)
# X25. X50. X75. day stage sub_stage
# 1 0 0 0 1 Adult Host-seeking
# 2 0 0 0 2 Adult Host-seeking
# 3 0 0 0 3 Adult Host-seeking
# 4 0 0 0 4 Adult Host-seeking
# 5 0 0 0 5 Adult Host-seeking
# 6 0 0 0 6 Adult Host-seeking
tail(hs)
# X25. X50. X75. day stage sub_stage
# 25 1 1 1 25 Adult Host-seeking
# 26 1 1 1 26 Adult Host-seeking
# 27 4 4 4 27 Adult Host-seeking
# 28 1 1 1 28 Adult Host-seeking
# 29 1 1 1 29 Adult Host-seeking
# 30 1 1 1 30 Adult Host-seeking
We can now simply plot it.
ggplot(hs, aes(x=day, y=X50., group=factor(stage), col=factor(stage))) +
ggtitle("Host-seeking Ae. albopictus Interquantile range abundance") +
geom_ribbon(aes(ymin=X25., ymax=X75., fill=factor(stage)),
col="white",
alpha=0.2,
outline.type="full") +
geom_line(linewidth=0.8) +
ylim(0,10)+
labs(x="Date", y="Interquantile range abundance", col="Stage", fill="Stage") +
theme_classic() +
theme(legend.position="bottom",
text = element_text(size=16),
strip.text = element_text(face = "italic"))
We can now repeat the exercise for a regional scale model.
library(gstat)
library(terra)
20 # 5000m/250 m = 20 columns and rows
gridDim <- expand.grid(x=1:gridDim, y=1:gridDim)
xy <- vgm(psill=0.5, range=100, model='Exp') # psill = partial sill = (sill-nugget)
varioMod <-# Set up an additional variable from simple kriging
gstat(formula=z~1,
zDummy <-locations = ~x+y,
dummy=TRUE,
beta=1,
model=varioMod,
nmax=1)
# Generate a randomly autocorrelated predictor data field
set.seed(123)
predict(zDummy, newdata=xy, nsim=1)
xyz <- "+proj=utm +zone=32 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"
utm32N <- terra::rast(nrow=gridDim, ncol=gridDim, crs=utm32N, ext=terra::ext(1220000,1225000, 5700000,5705000))
r <-::values(r) <- xyz$sim1
terra# plot(r, main="SAC landscape")
# convert to a data.frame
data.frame("id"=1:nrow(xyz), terra::crds(r))
df <- terra::as.polygons(terra::ext(r), crs=utm32N)
bbox <-
# Store Parameters for autocorrelation
terra::values(r)
autocorr_factor <-
# "expand onto space" the temperature time series by multiplying it with the autocorrelated surface simulated above.
do.call(rbind, lapply(1:ncell(r), function(x) {
mat <- sim_temp[[1]]$x*autocorr_factor[[x]]
d_t <-return(d_t)
}))
# format simulated temperature
names(mat) <- paste0("d_", 1:ndays)
cbind(df, mat)
df_temp <- sapply(df_temp[,-c(1:3)], function(x) as.integer(x*1000))
w <-# define a two-column matrix of coordinates to identify each cell in the lattice grid.
df_temp[,c("x","y")] cc <-
We run now the regional model keeping the same settings defined for the punctual scale model.
dynamAedes.m(species="albopictus",
simout <-scale="rg",
jhwv=habitat_liters,
temps.matrix=w[,as.numeric(format(as.Date(str),"%j")):as.numeric(format(as.Date(endr),"%j"))],
coords.proj4=utm32N,
cells.coords=as.matrix(cc),
startd=str,
endd=endr,
n.clusters=cl,
iter=it,
intro.eggs=ie,
compressed.output=FALSE,
seeding=TRUE,
verbose=FALSE)
summary(simout)
# Summary of dynamAedes simulations:
# ----------------------------------
# Species: Aedes albopictus
# Scale: REGIONAL
# Start Date: 2000-07-01
# End Date: 2000-08-01
# Number of Iterations: 1
# Introduced Stage: egg
# Number Introduced: 1000
# Is Output Compressed?: No
# Water in the System: 1 L
# Min days with population: 30
# Max days with population: 30
# inspect the raster
$`Host-seeking_q_0.5` hs.r
# class : SpatRaster
# dimensions : 20, 20, 30 (nrow, ncol, nlyr)
# resolution : 250, 250 (x, y)
# extent : 1220000, 1225000, 5700000, 5705000 (xmin, xmax, ymin, ymax)
# coord. ref. :
# source(s) : memory
# names : day1, day2, day3, day4, day5, day6, ...
# min values : 0, 0, 0, 0, 0, 0, ...
# max values : 0, 0, 0, 0, 0, 0, ...
# plot the raster with the median host-seeking abundace
plot(hs.r$`Host-seeking_q_0.5`$day30)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.