The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Type: Package
Title: Dynamic Panel Data Models
Version: 0.1.0
Author: Taha Zaghdoudi
Maintainer: Taha Zaghdoudi <zedtaha@gmail.com>
Description: Computes the first stage GMM estimate of a dynamic linear model with p lags of the dependent variables.
License: GPL-3
LazyData: TRUE
RoxygenNote: 5.0.1
Depends: R (≥ 3.3.0)
Imports: stats, gtools
NeedsCompilation: no
Packaged: 2016-08-28 10:51:09 UTC; Asus
Repository: CRAN
Date/Publication: 2016-08-28 13:24:47

Dynamic Panel Data Models

Description

This package computes the first stage GMM estimate of a dynamic linear model with p lags of the dependent variables.

Details

Package: dynpanel
Type: Package
Version: 1.0
Date: 2016-08-26
License: GPL-3

In this package, we apply the generalized method of moments to estimate the dynamic panel data models.

Author(s)

Taha Zaghdoudi

Taha Zaghdoudi <zedtaha@gmail.com>

References

Anderson, T. W.; Hsiao, Cheng (1981). Estimation of dynamic models with error components. ournal of the American Statistical Association. 76 (375) ,pp. 598-606.

Arellano, Manuel; Bond, Stephen (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies. 58, pp.2)-277. Cameron, A. Colin; Trivedi, Pravin K. (2005). Dynamic Models. Microeconometrics: Methods and Applications. New York: Cambridge University Press. pp. 763-768.

Hsiao, Cheng (2014). Dynamic Simultaneous Equations Models. Analysis of Panel Data. New York: Cambridge University Press. pp. 397-402.

Munnell AH (1990). Why has Productivity Growth Declined? Productivity and Public Investment, New England Economic Review, pp. 3-22.

Examples

 # Load data
 data(Produc)
 # Fit the dynamic panel data using the Arellano Bond (1991) instruments
 reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,4)
 summary(reg)
 # Fit the dynamic panel data using an automatic selection of appropriate IV matrix
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,0)
 #summary(reg)
 # Fit the dynamic panel data using the GMM estimator with the smallest set of instruments
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,1)
 #summary(reg)
 # Fit the dynamic panel data using a reduced form of IV from method 3
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,2)
 #summary(reg)
 # Fit the dynamic panel data using the IV matrix where the number of moments grows with kT
 # K: variables number and T: time per group
 #reg<-dpd(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,Produc,index=c("state","year"),1,3)
 #summary(reg)

US States Production

Description

Usage

data(Produc)

Format

A data frame with 816 rows and 10 variables


method

Description

method

Usage

dpd(x, ...)

Arguments

x

a numeric design matrix for the model.

...

not used

Author(s)

Zaghdoudi Taha


formula

Description

formula

Usage

## S3 method for class 'formula'
dpd(formula, data = list(), index = c("id", "time"), p,
  meth = c(0, 1, 2, 3, 4), ...)

Arguments

formula

PIB~INF+TIR

data

the dataframe

index

: id is the name of the identity groups and time is the time per group

p

scalar, autoregressive order for dependent variable

meth

scalar, indicator for the Instruments to use

...

not used


Summary

Description

Summary

Usage

## S3 method for class 'dpd'
summary(object, ...)

Arguments

object

is the object of the function

...

not used

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.