Package ‘ebrahim.gof’

September 1, 2025
Type Package

Title Ebrahim-Farrington Goodness-of-Fit Test for Logistic Regression
Version 1.0.0

Date 2025-08-20

Maintainer Ebrahim Khaled Ebrahim <ebrahimkhaled@alexu.edu.eg>

Description Implements the Ebrahim-Farrington goodness-of-fit test for logistic
regression models, particularly effective for sparse data and binary outcomes.
This test provides an improved alternative to the traditional Hosmer-Lemeshow
test by using a modified Pearson chi-square statistic with data-dependent
grouping. The test is based on Farrington (1996) theoretical framework but
simplified for practical implementation with binary data. Includes functions
for both the original Farrington test (for grouped data) and the new
Ebrahim-Farrington test (for binary data with automatic grouping). For more details see Hos-
mer (1980) <doi:10.1080/0361092800882794 1> and Farrington (1996) <doi:10.1111/j.2517-
6161.1996.tb02086.x>.

License GPL-3
URL https://github.com/ebrahimkhaled/ebrahim.gof

BugReports https://github.com/ebrahimkhaled/ebrahim.gof/issues
Depends R (>=3.5.0)
Imports stats

Suggests testthat (>= 3.0.0), knitr, rmarkdown, ResourceSelection,
ggplot2
Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Ebrahim Khaled Ebrahim [aut, cre]
Repository CRAN

Date/Publication 2025-09-01 17:10:22 UTC

https://doi.org/10.1080/03610928008827941
https://doi.org/10.1111/j.2517-6161.1996.tb02086.x
https://doi.org/10.1111/j.2517-6161.1996.tb02086.x
https://github.com/ebrahimkhaled/ebrahim.gof
https://github.com/ebrahimkhaled/ebrahim.gof/issues

2 ef.gof

Contents
ef.gof . . e 2
Index 5
ef.gof Ebrahim-Farrington Goodness-of-Fit Test for Logistic Regression
Description

Performs the Ebrahim-Farrington goodness-of-fit test for logistic regression models. This test is
particularly effective for binary data and sparse datasets, providing an improved alternative to the
traditional Hosmer-Lemeshow test.

Usage
ef.gof(y, predicted_probs, model = NULL, m = NULL, G = 10)

Arguments

y Numeric vector of binary responses (0/1) for binary data, or counts of successes
for grouped data.

predicted_probs
Numeric vector of predicted probabilities from the logistic regression model.
Must be same length as y.

model Optional glm object. Required only for the original Farrington test with grouped
data (when m is provided and G is NULL).
m Optional numeric vector of trial counts for each observation (for grouped data).

If NULL, data is assumed to be binary.

G Optional integer specifying the number of groups for binary data grouping. De-
fault is 10. If NULL, no grouping is performed and m must be provided.

Details

The Ebrahim-Farrington test is based on Farrington’s (1996) theoretical framework but simplified
for practical implementation with binary data. The test uses a modified Pearson chi-square statistic
with data-dependent grouping, where observations are grouped by their predicted probabilities.

For binary data (when G is specified), the test automatically groups observations into G groups based
on predicted probabilities and applies the simplified Ebrahim-Farrington statistic:

Ter — (G —2)

Z =
Br 2G - 2)

where T is the modified Pearson chi-square statistic, and G is the number of groups.

For grouped data (when m is provided), the test applies the original Farrington test with full variance
calculations.

ef.gof 3

Value

A data frame with the following columns:

Test Character string identifying the test performed
Test_Statistic Numeric value of the standardized test statistic
p_value Numeric p-value for the test

Note

* For binary data with automatic grouping (G specified): Use the Ebrahim-Farrington test which
is computationally efficient and doesn’t require the model specification.

* For grouped data (m provided): Use the original Farrington test which requires the fitted model
object.

* The test statistic follows a standard normal distribution under the null hypothesis of adequate
model fit.

* For binary data with m=1 for all observations and no grouping, the test is not applicable and
will return a p-value of 1.

Author(s)
Ebrahim Khaled Ebrahim <ebrahimkhaled@alexu.edu.eg>

References

Farrington, C. P. (1996). On Assessing Goodness of Fit of Generalized Linear Models to Sparse
Data. *Journal of the Royal Statistical Society. Series B (Methodological)*, 58(2), 349-360.
Ebrahim, K. E. (2025). Goodness-of-Fits Tests and Calibration Machine Learning Algorithms for
Logistic Regression Model with Sparse Data. *Master’s Thesis*, Alexandria University. Hosmer,
D. W, & Lemeshow, S. (1980). A goodness-of-fit test for the multiple logistic regression model.
Communications in Statistics - Theory and Methods, 9(10), 1043—1069. https://doi.org/10.1080/03610928008827941

See Also

hoslem. test for the Hosmer-Lemeshow test

Examples

Example 1: Binary data with automatic grouping (Ebrahim-Farrington test)
set.seed(123)

n <- 500

x <= rnorm(n)

linpred <- 0.5 + 1.2 * X

prob <= 1 / (1 + exp(-linpred))

y <= rbinom(n, 1, prob)

Fit logistic regression
model <- glm(y ~ x, family = binomial())
predicted_probs <- fitted(model)

ef.gof

Perform Ebrahim-Farrington test with 10 groups
result <- ef.gof(y, predicted_probs, G = 10)
print(result)

Example 2: Compare with different number of groups
result_4 <- ef.gof(y, predicted_probs, G = 4)
result_20 <- ef.gof(y, predicted_probs, G = 20)

Example 3: Grouped data (original Farrington test)

Note: This requires actual grouped data with trials > 1
Simulated grouped data

n_groups <- 50

m_trials <- sample(5:20, n_groups, replace = TRUE)
x_grouped <- rnorm(n_groups)

linpred_grouped <- -0.5 + 1.0 * x_grouped

prob_grouped <- 1 / (1 + exp(-linpred_grouped))
y_grouped <- rbinom(n_groups, m_trials, prob_grouped)

Fit model for grouped data
data_grouped <- data.frame(successes = y_grouped, trials = m_trials, x = x_grouped)
model_grouped <- glm(cbind(successes, trials - successes) ~ x,

data = data_grouped, family = binomial())
predicted_probs_grouped <- fitted(model_grouped)

Original Farrington test

result_grouped <- ef.gof(y_grouped, predicted_probs_grouped,
model = model_grouped, m = m_trials)

print(result_grouped)

Index

ef.gof, 2

hoslem.test, 3

	ef.gof
	Index

