The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The goal of ebreg is to implement a Bayesian-like approach to the high-dimensional sparse linear regression problem based on an empirical or data-dependent prior distribution, which can be used for estimation/inference on the model parameters, variable selection, and prediction of a future response.
You can install the released version of ebreg from CRAN with:
install.packages("ebreg")
And the development version from GitHub with:
# install.packages("devtools")
::install_github("antang93/Empirical-Bayes") devtools
This is a basic example which shows you how to solve a common problem:
library(ebreg)
#> Loading required package: lars
#> Loaded lars 1.2
## basic example code
<- 70
n <- 100
p <- rep(1, 5)
beta <- length(beta)
s0 <- 1
sig2 <- 1
d <- function(x) -x * (log(1) + 0.05 * log(p)) + log(x <= n)
log.f <- matrix(rnorm(n * p), nrow=n, ncol=p)
X <- matrix(rnorm(p), nrow=1, ncol=p)
X.new <- as.numeric(X[, 1:s0] %*% beta[1:s0]) + sqrt(sig2) * rnorm(n)
y
<-ebreg(y, X, X.new, TRUE, alpha=.99, gam=.005, NULL, FALSE, igpar=c(0.01, 4), log.f, M=5000, TRUE, FALSE, .95) res
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.