The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Ian likes studying leaves. He is especially interested in “leaf
economics” – things like construction costs per unit area
(lma
), how long-lived leaves are (longev
) and
how they vary with environment. In particular:
Is there evidence that leaves vary (in their “economics” traits) across sites with different levels of rainfall and soil nutrients?
What are the response variables? What sort of analysis is appropriate here?
The response is leaf economics traits, collectively, which includes:
lma
(leaf construction costs per unit area)longev
(how long leaves live for)Both of these are quantitative variables.
A multivariate analysis would seem appropriate.
What are the response variables? What sort of analysis is appropriate here?
The response variables are the flower size and shape variables. These are:
A multivariate analysis would be the way to go here.
What are the response variables? What type of analysis is appropriate here?
The response variables are abundance of the three most abundant genera of hunting spider. Some sort of multivariate analyis would be appropriate, but given that we are dealing with abundances, something that accounts for the mean-variance relationship might be needed.
R
library(smatr)
data(leaflife)
Yleaf=cbind(leaflife$lma,leaflife$longev)
colnames(Yleaf)=c("lma","longev")
var(Yleaf)
#> lma longev
#> lma 4186.0264 36.7905011
#> longev 36.7905 0.8232901
data("iris")
var(iris[,1:4])
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> Sepal.Length 0.6856935 -0.0424340 1.2743154 0.5162707
#> Sepal.Width -0.0424340 0.1899794 -0.3296564 -0.1216394
#> Petal.Length 1.2743154 -0.3296564 3.1162779 1.2956094
#> Petal.Width 0.5162707 -0.1216394 1.2956094 0.5810063
library(smatr)
data(leaflife)
Yleaf = cbind(leaflife$lma,leaflife$longev)
ft_leaf = lm(Yleaf~rain*soilp, data=leaflife)
anova(ft_leaf, test="Wilks")
#> Analysis of Variance Table
#>
#> Df Wilks approx F num Df den Df Pr(>F)
#> (Intercept) 1 0.11107 248.096 2 62 < 2.2e-16 ***
#> rain 1 0.68723 14.108 2 62 8.917e-06 ***
#> soilp 1 0.93478 2.163 2 62 0.1236
#> rain:soilp 1 0.95093 1.600 2 62 0.2102
#> Residuals 63
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(leaflife$lma~leaflife$longev, xlab="Leaf longevity (years)",
ylab="Leaf mass per area (mg/mm^2)",
col=interaction(leaflife$rain,leaflife$soilp))
legend("bottomright",legend=c("high rain, high soilp",
"low rain, high soilp", "high rain, low soilp",
"low rain, low soilp"), col=1:4, pch=1)
What is the nature of the rainfall effect?
The red dots look to be higher than the black dots, and the blue dots look to be higher than the green dots. This suggests that at low rainfall, thicker leaves (larger mass per unit area) are needed to achieve the same longevity. Or equivalently, at low rainfall, leaves of a given LMA don’t live as long.
par(mfrow=c(1,3),mar=c(3,3,1.5,0.5),mgp=c(1.75,0.75,0))
library(ecostats)
plotenvelope(ft_leaf,which=1:3,n.sim=99)
(Note that plotenvelope
was run with just
99
iterations, to speed up computation time.)
What do you think about the model assumptions made here?
They aren’t looking great – the residual vs fits plot has a bit of a fan shape, confirmed by the scale-location plot, which has an increasing trend that does not stay inside its simulation envelope. This suggests that variability increases as the mean increases, so maybe we should be transforming data.
mvabund
library(mvabund)
ftmany_leaf = manylm(Yleaf~rain*soilp, data=leaflife)
anova(ftmany_leaf,cor.type="R",test="LR")
#> Analysis of Variance Table
#>
#> Model: manylm(formula = Yleaf ~ rain * soilp, data = leaflife)
#>
#> Overall test for all response variables
#> Test statistics:
#> Res.Df Df.diff val(LR) Pr(>LR)
#> (Intercept) 66
#> rain 65 1 23.941 0.002 **
#> soilp 64 1 4.475 0.128
#> rain:soilp 63 1 3.371 0.194
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> Arguments:
#> Test statistics calculated assuming unconstrained correlation response
#> P-value calculated using 999 iterations via residual (without replacement) resampling.
Repeat the analyses and assumption checks of Code Boxes 11.2-11.3 on log-transformed data. Do assumptions look more reasonable here? Are results any different?
YleafLog = log(Yleaf)
ft_leafLog = lm(YleafLog~rain*soilp, data=leaflife)
anova(ft_leafLog, test="Wilks")
#> Analysis of Variance Table
#>
#> Df Wilks approx F num Df den Df Pr(>F)
#> (Intercept) 1 0.00239 12947.3 2 62 < 2.2e-16 ***
#> rain 1 0.65969 16.0 2 62 2.509e-06 ***
#> soilp 1 0.91520 2.9 2 62 0.06413 .
#> rain:soilp 1 0.96231 1.2 2 62 0.30389
#> Residuals 63
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
par(mfrow=c(1,3),mar=c(3,3,1.5,0.5),mgp=c(1.75,0.75,0))
plotenvelope(ft_leafLog,which=1:3,n.sim=99)
Is this what you expected to happen?
Assumptions are looking more reasonable now, there is no longer a
fan-shape nor appreciable right-skew in the data. This is what I
expected because (as mentioned in the question) size variables tend to
make more sense when viewed on a proportional scale. MANOVA results were
generally similar, although test statistics (approx F
) for
main effects were slightly larger, in keeping with the general result
that you can see signals more clearly when reducing skew in data
(procedures tend to be more efficient when their underlying
assumptions are more reasonable).
Fit a linear model to predict petal length from the remaining flower variables and check assumptions. Is there any evidence of lack-of-fit? (This would imply a problem with the multivariate normality assumptions.)
data(iris)
iris$Yflower = as.matrix(iris[,1:4])
ft_iris = lm(Yflower~Species,data=iris)
par(mfrow=c(1,3),mar=c(3,3,1.5,0.5),mgp=c(1.75,0.75,0))
plotenvelope(ft_iris,which=1:3,n.sim=99)
This doesn’t look too bad, but there is a moderate fan-shape, evident in an increasing trend in the scale-location plot, which drifts outside its simulation envelope. The trend is not strong however, with the y-axis predictions ranging from 0.6 to 1 (varying over a factor of about 1.5).
Does a log-transformation help at all?
iris$YfLog = as.matrix(log(iris[,1:4]))
ft_irisLog = lm(YfLog~Species,data=iris)
par(mfrow=c(1,3),mar=c(3,3,1.5,0.5),mgp=c(1.75,0.75,0))
plotenvelope(ft_irisLog,which=1:3,n.sim=99)
Oh well that’s disappointing! The log-transformation hasn’t made things much better, reversing the fan-shape and the trend in the scale-location plot (although again it is not a strong trend). Residuals now appear quite non-normal with some long tails, especially at the lower end. The issue is largely with petal variables (blue/green), we would get a slightly better plot if we only log-transformed sepal measurements. The main issue we saw previously - an increasing trend on the scale-location plot - is however less of an issue now (note the trend line covers a smaller range of values, from about 0.7 to 0.9).
lme4
or glmmTMB
Petrus’s data from Exercise 11.3 are available in the
mvabund
package, but with abundances for 12 different
species. First we will calculate the abundance of the three most
abundant genera:
library(mvabund)
library(reshape2)
data(spider)
Alop=apply(spider$abund[,1:3],1,sum)
Pard=apply(spider$abund[,7:10],1,sum)
Troc = spider$abund[,11]
spidGeneraWide = data.frame(rows=1:28,scale(spider$x[,c(1,4)]), Alop,Pard,Troc)
head(spidGeneraWide)
#> rows soil.dry moss Alop Pard Troc
#> 1 1 -0.1720862 0.6289186 35 117 57
#> 2 2 0.7146218 -0.6870394 2 54 65
#> 3 3 0.1062154 0.1916410 37 93 66
#> 4 4 0.2507444 0.1916410 8 131 86
#> 5 5 0.6728333 -1.4299919 21 214 91
#> 6 6 1.1247181 0.1916410 6 62 63
spiderGeneraLong = melt(spidGeneraWide,id=c("rows","soil.dry","moss"))
names(spiderGeneraLong)[4:5] = c("genus","abundance")
head(spiderGeneraLong)
#> rows soil.dry moss genus abundance
#> 1 1 -0.1720862 0.6289186 Alop 35
#> 2 2 0.7146218 -0.6870394 Alop 2
#> 3 3 0.1062154 0.1916410 Alop 37
#> 4 4 0.2507444 0.1916410 Alop 8
#> 5 5 0.6728333 -1.4299919 Alop 21
#> 6 6 1.1247181 0.1916410 Alop 6
glmmTMB
library(glmmTMB)
spid_glmm = glmmTMB(abundance~genus+soil.dry:genus+moss:genus
+(0+genus|rows), family="poisson",data=spiderGeneraLong)
summary(spid_glmm)
#> Family: poisson ( log )
#> Formula: abundance ~ genus + soil.dry:genus + moss:genus + (0 + genus | rows)
#> Data: spiderGeneraLong
#>
#> AIC BIC logLik deviance df.resid
#> 681.1 717.5 -325.5 651.1 69
#>
#> Random effects:
#>
#> Conditional model:
#> Groups Name Variance Std.Dev. Corr
#> rows genusAlop 1.3576 1.1652
#> genusPard 1.5900 1.2610 0.75
#> genusTroc 0.7682 0.8765 0.59 0.82
#> Number of obs: 84, groups: rows, 28
#>
#> Conditional model:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 1.9843 0.2463 8.058 7.76e-16 ***
#> genusPard 1.0846 0.2100 5.165 2.41e-07 ***
#> genusTroc 0.6072 0.2335 2.600 0.00932 **
#> genusAlop:soil.dry -0.6012 0.3284 -1.831 0.06716 .
#> genusPard:soil.dry 1.4041 0.3704 3.791 0.00015 ***
#> genusTroc:soil.dry 1.4108 0.2950 4.782 1.74e-06 ***
#> genusAlop:moss 0.3435 0.3322 1.034 0.30103
#> genusPard:moss 0.7361 0.3547 2.075 0.03796 *
#> genusTroc:moss -0.2033 0.2648 -0.768 0.44264
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Can you see any differences in response of different spider genera to environmental conditions?
Pard
and Trop
seem to increase in response
to soil.dry
, significantly so, whereas Alop
decreases. There is a suggestion of a difference in moss
response as well, with a difference of 0.93 in slope between
Pard
and Troc
, which is reasonably large
compared to standard errors.
library(MCMCglmm)
set.seed(1)
ft_MCMC = MCMCglmm(cbind(Alop,Pard,Troc)~trait+soil.dry:trait+moss:trait,
rcov=~us(trait):units,data=spidGeneraWide, family=rep("poisson",3))
summary(ft_MCMC)
#>
#> Iterations = 3001:12991
#> Thinning interval = 10
#> Sample size = 1000
#>
#> DIC: 515.7024
#>
#> R-structure: ~us(trait):units
#>
#> post.mean l-95% CI u-95% CI eff.samp
#> traitAlop:traitAlop.units 1.9674 0.6896 3.396 171.9
#> traitPard:traitAlop.units 1.5216 0.5111 2.619 750.4
#> traitTroc:traitAlop.units 0.8476 0.1973 1.620 735.5
#> traitAlop:traitPard.units 1.5216 0.5111 2.619 750.4
#> traitPard:traitPard.units 2.1081 1.0427 3.557 624.8
#> traitTroc:traitPard.units 1.2399 0.5337 2.169 738.7
#> traitAlop:traitTroc.units 0.8476 0.1973 1.620 735.5
#> traitPard:traitTroc.units 1.2399 0.5337 2.169 738.7
#> traitTroc:traitTroc.units 1.0877 0.4375 1.837 545.8
#>
#> Location effects: cbind(Alop, Pard, Troc) ~ trait + soil.dry:trait + moss:trait
#>
#> post.mean l-95% CI u-95% CI eff.samp pMCMC
#> (Intercept) 1.96106 1.40677 2.56137 564.0 <0.001 ***
#> traitPard 1.10316 0.62128 1.55902 307.0 <0.001 ***
#> traitTroc 0.60433 0.07406 1.12209 314.2 0.028 *
#> traitAlop:soil.dry -0.60527 -1.38983 0.14573 797.5 0.102
#> traitPard:soil.dry 1.44406 0.61769 2.22122 741.5 <0.001 ***
#> traitTroc:soil.dry 1.46411 0.76420 2.04801 353.2 <0.001 ***
#> traitAlop:moss 0.35515 -0.34662 1.14501 683.7 0.332
#> traitPard:moss 0.76450 -0.01952 1.60829 902.7 0.064 .
#> traitTroc:moss -0.19314 -0.76568 0.37943 646.0 0.498
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
How do results compare to the model fitted using
glmmTMB
?
Estimates of parameters in the mean model (intercepts, slopes) are
quite similar and seem to have similar levels of significance also.
Variance-covariance parameters for the random effects are presented in a
different format however – MCMCglmm
directly reports values
of \(\boldsymbol{\Sigma}\), whereas
glmmTMB
reports variances and correlations. We can convert
MCMCglmm
values to correlations, which is best done by
taking the MCMC samples, transforming each individual one, then finding
the posterior mean:
which returns a value very similar to the correlation in the
glmmTMB
output. Note however that the variances are quite
different, e.g. for Alop
we have a posterior mean
of 1.97 for MCMCglmm
but an estimate of 1.38 for
glmmTMB
. The reason for this is that glmmTMB
uses maximum likelihood, and its point estimate corresponds more closely
to a posterior mode than a posterior mean. Estimating these posterior
densities using histograms:
par(mfrow=c(1,3),mgp=c(1.75,0.75,0),mar=c(3,3,1,1))
hist(ft_MCMC$VCV[,1],breaks=15,xlab="Alop variance",main="")
abline(v=summary(spid_glmm)$varcor$cond$rows[1,1],col="red")
hist(ft_MCMC$VCV[,5],breaks=15,xlab="Pard variance",main="")
abline(v=summary(spid_glmm)$varcor$cond$rows[2,2],col="red")
hist(ft_MCMC$VCV[,9],breaks=15,xlab="Troc variance",main="")
abline(v=summary(spid_glmm)$varcor$cond$rows[3,3],col="red")
The posterior modes show much closer agreement to the
glmmTMB
variance estimates, although still tending to be
slightly larger.
Use spiderGeneraLong
to fit a model that assumes all
spiders respond in the same way to their environment.
spid_sameResponse = glmmTMB(abundance~genus+soil.dry+moss
+(0+genus|rows), family="poisson",data=spiderGeneraLong)
summary(spid_sameResponse)
#> Family: poisson ( log )
#> Formula: abundance ~ genus + soil.dry + moss + (0 + genus | rows)
#> Data: spiderGeneraLong
#>
#> AIC BIC logLik deviance df.resid
#> 736.6 763.3 -357.3 714.6 73
#>
#> Random effects:
#>
#> Conditional model:
#> Groups Name Variance Std.Dev. Corr
#> rows genusAlop 6.6327 2.5754
#> genusPard 2.3031 1.5176 0.63
#> genusTroc 0.7952 0.8917 0.10 0.67
#> Number of obs: 84, groups: rows, 28
#>
#> Conditional model:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 1.8623 0.5123 3.635 0.000278 ***
#> genusPard 1.2207 0.4187 2.915 0.003553 **
#> genusTroc 0.7931 0.5335 1.487 0.137088
#> soil.dry 0.9635 0.5288 1.822 0.068451 .
#> moss -0.3894 0.2991 -1.302 0.192993
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Now use anova
to compare this model to
spid_glmm
.
anova(spid_sameResponse,spid_glmm)
#> Data: spiderGeneraLong
#> Models:
#> spid_sameResponse: abundance ~ genus + soil.dry + moss + (0 + genus | rows), zi=~0, disp=~1
#> spid_glmm: abundance ~ genus + soil.dry:genus + moss:genus + (0 + genus | , zi=~0, disp=~1
#> spid_glmm: rows), zi=~0, disp=~1
#> Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
#> spid_sameResponse 11 736.58 763.32 -357.29 714.58
#> spid_glmm 15 681.08 717.54 -325.54 651.08 63.505 4 5.313e-13 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Is there evidence that different spider genera respond in different ways to their environment?
Yes!
To simplify referencing of parameters let’s refit with no intercept in the model
spid_glmm0 = glmmTMB(abundance~0+genus+soil.dry:genus+moss:genus
+(0+genus|rows), family="poisson",data=spiderGeneraLong)
par(mgp=c(2,0.75,0),mar=c(3,3,0.5,0.5))
plot(log(abundance)~soil.dry,data=spiderGeneraLong,type="n",yaxt="n",
ylab="Abundance[log scale]",xlab="Soil dryness [standardised]")
yTicks = c(1,2,5,10,20,50,100)
axis(2,at=log(yTicks),labels=yTicks)
for(iVar in 1:nlevels(spiderGeneraLong$genus))
{
points(log(abundance)~soil.dry,
data=spiderGeneraLong[spiderGeneraLong$genus==levels(spiderGeneraLong$genus)[iVar],],col=iVar)
abline(spid_glmm0$fit$par[iVar], spid_glmm0$fit$par[3+iVar],col=iVar)
}
legend("topleft",levels(spiderGeneraLong$genus),col=1:3,pch=1,cex=0.9,y.intersp=1.0)
But note this plot excludes absences… there are only a few for these taxa. But in other situations with many zeros, a lot of data would be missing from a plot constructed in this way, unless you get creative!
par(mfrow=c(1,2),mgp=c(2,0.75,0),mar=c(3,3,1,1))
library(DHARMa)
spidFits = predict(spid_glmm,re.form=NA)
res_spid = qnorm( simulateResiduals(spid_glmm)$scaledResiduals )
plot(spidFits,res_spid,col=spiderGeneraLong$genus, xlab="Fitted values", ylab="Dunn-Smyth residuals")
abline(h=0,col="olivedrab")
addSmooth(spidFits,res_spid) # a function in ecostats package to add smoother and confidence band
qqenvelope(res_spid,col=spiderGeneraLong$genus)
What do these plots tell us about model assumptions?
There is no evidence in these plots of violations of model assumptions.
set.seed(2)
ft_MCMC2=MCMCglmm(cbind(Alop,Pard,Troc)~trait+soil.dry:trait+moss:trait,
rcov=~us(trait):units,data=spidGeneraWide, family=rep("poisson",3))
set.seed(3)
ft_MCMC3=MCMCglmm(cbind(Alop,Pard,Troc)~trait+soil.dry:trait+moss:trait,
rcov=~us(trait):units,data=spidGeneraWide, family=rep("poisson",3))
whichPlot=c(1:3,5:6,9) # indices of unique variance-covariance parameters
whichIter = 501:1000 # choosing which rows to plot, just done to lower filesize
par(mfrow=c(length(whichPlot),1),mar=c(2,0.5,1.5,0))
for(iPlot in whichPlot)
{
plot.default(ft_MCMC$VCV[whichIter,iPlot],type="l",lwd=0.3,yaxt="n")
lines(ft_MCMC2$VCV[whichIter,iPlot],col=2,lwd=0.3)
lines(ft_MCMC3$VCV[whichIter,iPlot],col=3,lwd=0.3)
mtext(colnames(ft_MCMC$VCV)[iPlot])
}
gelman.diag(mcmc.list(ft_MCMC$VCV[,whichPlot],ft_MCMC2$VCV[,whichPlot],
ft_MCMC3$VCV[,whichPlot]))
#> Potential scale reduction factors:
#>
#> Point est. Upper C.I.
#> traitAlop:traitAlop.units 1.00 1.00
#> traitPard:traitAlop.units 1.00 1.01
#> traitTroc:traitAlop.units 1.00 1.00
#> traitPard:traitPard.units 1.01 1.02
#> traitTroc:traitPard.units 1.00 1.01
#> traitTroc:traitTroc.units 1.00 1.01
#>
#> Multivariate psrf
#>
#> 1.02
Try to fit a hierarchical GLM, along the lines of Code Boxes 11.6 and 11.7, to the three Alopecosa species.
First try using glmmTMB
:
spider3Wide = data.frame(rows=1:28, scale(spider$x[,c(1,4)]), spider$abund[,1:3])
spider3Long = melt(spider3Wide,id=c("rows","soil.dry","moss"))
names(spider3Long)[4:5] = c("species","abundance")
head(spider3Long)
#> rows soil.dry moss species abundance
#> 1 1 -0.1720862 0.6289186 Alopacce 25
#> 2 2 0.7146218 -0.6870394 Alopacce 0
#> 3 3 0.1062154 0.1916410 Alopacce 15
#> 4 4 0.2507444 0.1916410 Alopacce 2
#> 5 5 0.6728333 -1.4299919 Alopacce 1
#> 6 6 1.1247181 0.1916410 Alopacce 0
spid_glmm3 = glmmTMB(abundance~species+soil.dry:species+moss:species
+(0+species|rows), family="poisson",data=spider3Long)
#> Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-definite Hessian matrix.
#> See vignette('troubleshooting')
#> Warning in fitTMB(TMBStruc): Model convergence problem; singular convergence (7). See
#> vignette('troubleshooting')
Uh oh, non-convergence. Try using MCMCglmm
:
set.seed(1)
ft_MCMC2=try(MCMCglmm(cbind(Alopacce,Alopcune,Alopfabr)~trait+soil.dry:trait+moss:trait,
rcov=~us(trait):units,data=spider3Wide, family=rep("poisson",3))) #this one returns an error
#> Error in MCMCglmm(cbind(Alopacce, Alopcune, Alopfabr) ~ trait + soil.dry:trait + :
#> ill-conditioned G/R structure (CN = 35410684926832716.000000): use proper priors if you haven't or rescale data if you have
set.seed(3)
ft_MCMC=MCMCglmm(cbind(Alopacce,Alopcune,Alopfabr)~trait+soil.dry:trait+moss:trait,
rcov=~us(trait):units,data=spider3Wide, family=rep("poisson",3))
set.seed(5)
ft_MCMC2=MCMCglmm(cbind(Alopacce,Alopcune,Alopfabr)~trait+soil.dry:trait+moss:trait,
rcov=~us(trait):units,data=spider3Wide, family=rep("poisson",3))
set.seed(6)
ft_MCMC3=MCMCglmm(cbind(Alopacce,Alopcune,Alopfabr)~trait+soil.dry:trait+moss:trait,
rcov=~us(trait):units,data=spider3Wide, family=rep("poisson",3))
whichPlot=c(1:3,5:6,9) # indices of unique variance-covariance parameters
whichIter = 501:1000 # choosing which rows to plot, just done to lower filesize
par(mfrow=c(length(whichPlot),1),mar=c(2,0.5,1.5,0))
for(iPlot in whichPlot)
{
plot.default(ft_MCMC$VCV[whichIter,iPlot],type="l",lwd=0.3,yaxt="n")
lines(ft_MCMC2$VCV[whichIter,iPlot],col=2,lwd=0.3)
lines(ft_MCMC3$VCV[whichIter,iPlot],col=3,lwd=0.3)
mtext(colnames(ft_MCMC$VCV)[iPlot])
}
gelman.diag(mcmc.list(ft_MCMC$VCV[,whichPlot],ft_MCMC2$VCV[,whichPlot],
ft_MCMC3$VCV[,whichPlot]))
#> Potential scale reduction factors:
#>
#> Point est. Upper C.I.
#> traitAlopacce:traitAlopacce.units 1.74 2.97
#> traitAlopcune:traitAlopacce.units 1.31 1.90
#> traitAlopfabr:traitAlopacce.units 2.87 6.04
#> traitAlopcune:traitAlopcune.units 1.45 2.31
#> traitAlopfabr:traitAlopcune.units 2.56 4.96
#> traitAlopfabr:traitAlopfabr.units 3.00 9.29
#>
#> Multivariate psrf
#>
#> 4.53
Roughly every second run returns an error, but sometimes that doesn’t happen. You can see issues however from the trace plot, where the different chains clearly do not mix – you should not be able to distinguish a trend with colour, but for some parameters, one chain (colour) has values consistently larger than another so is clearly not sampling from the same distribution. The Gelman-Rubin statistics are not close to 1!
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.