The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

educationdata

CRAN status R-CMD-check

Retrieve data from the Urban Institute’s Education Data API as a data.frame for easy analysis.

NOTE: By downloading and using this programming package, you agree to abide by the Data Policy and Terms of Use of the Education Data Portal.

Installation

You can install the released version of educationdata from CRAN with:

install.packages("educationdata")

And the development version from GitHub with:

# install.packages('devtools') # if necessary
devtools::install_github('UrbanInstitute/education-data-package-r')

Usage

library(educationdata)

df <- get_education_data(level = 'schools', 
                         source = 'ccd', 
                         topic = 'enrollment', 
                         subtopic = list('race', 'sex'),
                         filters = list(year = 2008,
                                        grade = 9:12,
                                        ncessch = '340606000122'),
                         add_labels = TRUE)

str(df)
#> 'data.frame':    96 obs. of  9 variables:
#>  $ year       : int  2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 ...
#>  $ ncessch    : chr  "340606000122" "340606000122" "340606000122" "340606000122" ...
#>  $ ncessch_num: num  3.41e+11 3.41e+11 3.41e+11 3.41e+11 3.41e+11 ...
#>  $ grade      : Factor w/ 19 levels "Pre-K","Kindergarten",..: 11 11 11 11 11 11 11 11 11 11 ...
#>  $ race       : Factor w/ 14 levels "White","Black",..: 2 3 5 5 2 4 6 11 1 7 ...
#>  $ sex        : Factor w/ 7 levels "Male","Female",..: 1 1 2 1 2 2 2 1 2 1 ...
#>  $ enrollment : int  41 39 0 0 46 32 3 270 166 0 ...
#>  $ fips       : Factor w/ 79 levels "Alabama","Alaska",..: 34 34 34 34 34 34 34 34 34 34 ...
#>  $ leaid      : chr  "3406060" "3406060" "3406060" "3406060" ...

The get_education_data() function will return a data.frame from a call to the Education Data API.

get_education_data(level, source, topic, subtopic, filters, add_labels)

where:

Available Endpoints

Level Source Topic Subtopic Main Filters Years Available
college-university fsa 90-10-revenue-percentages NA year 2014–2017
college-university fsa campus-based-volume NA year 2001–2017
college-university fsa financial-responsibility NA year 2006–2016
college-university fsa grants NA year 1999–2018
college-university fsa loans NA year 1999–2018
college-university ipeds academic-libraries NA year 2013–2019
college-university ipeds academic-year-room-board-other NA year 1999–2020
college-university ipeds academic-year-tuition-prof-program NA year 1986–2008, 2010–2020
college-university ipeds academic-year-tuition NA year 1986–2020
college-university ipeds admissions-enrollment NA year 2001–2019
college-university ipeds admissions-requirements NA year 1990–2019
college-university ipeds completers NA year 2011–2019
college-university ipeds completions-cip-2 NA year 1991–2019
college-university ipeds completions-cip-6 NA year 1983–2019
college-university ipeds directory NA year 1980, 1984–2020
college-university ipeds enrollment-full-time-equivalent NA year, level_of_study 1997–2018
college-university ipeds enrollment-headcount NA year, level_of_study 1996–2018
college-university ipeds fall-enrollment age, sex year, level_of_study 1991, 1993, 1995, 1997, 1999–2020
college-university ipeds fall-enrollment race, sex year, level_of_study 1986–2020
college-university ipeds fall-enrollment residence year 1986, 1988, 1992, 1994, 1996, 1998, 2000–2020
college-university ipeds fall-retention NA year 2003–2020
college-university ipeds finance NA year 1979, 1983–2017
college-university ipeds grad-rates-200pct NA year 2007–2017
college-university ipeds grad-rates-pell NA year 2015–2017
college-university ipeds grad-rates NA year 1996–2017
college-university ipeds institutional-characteristics NA year 1980, 1984–2020
college-university ipeds outcome-measures NA year 2015–2018
college-university ipeds program-year-room-board-other NA year 1999–2020
college-university ipeds program-year-tuition-cip NA year 1987–2020
college-university ipeds salaries-instructional-staff NA year 1980, 1984, 1985, 1987, 1989–1999, 2001–2018
college-university ipeds salaries-noninstructional-staff NA year 2012–2018
college-university ipeds sfa-all-undergraduates NA year 2007–2017
college-university ipeds sfa-by-living-arrangement NA year 2008–2017
college-university ipeds sfa-by-tuition-type NA year 1999–2017
college-university ipeds sfa-ftft NA year 1999–2017
college-university ipeds sfa-grants-and-net-price NA year 2008–2017
college-university ipeds student-faculty-ratio NA year 2009–2020
college-university nacubo endowments NA year 2012–2018
college-university nccs 990-forms NA year 1993–2016
college-university nhgis census-1990 NA year 1980, 1984–2017
college-university nhgis census-2000 NA year 1980, 1984–2017
college-university nhgis census-2010 NA year 1980, 1984–2017
college-university scorecard default NA year 1996–2017
college-university scorecard earnings NA year 2003–2014
college-university scorecard institutional-characteristics NA year 1996–2017
college-university scorecard repayment NA year 2007–2016
college-university scorecard student-characteristics aid-applicants year 1997–2016
college-university scorecard student-characteristics home-neighborhood year 1997–2016
school-districts ccd directory NA year 1986–2020
school-districts ccd enrollment NA year, grade 1986–2020
school-districts ccd enrollment race year, grade 1986–2020
school-districts ccd enrollment race, sex year, grade 1986–2020
school-districts ccd enrollment sex year, grade 1986–2020
school-districts ccd finance NA year 1991, 1994–2018
school-districts edfacts assessments NA year, grade_edfacts 2009–2018
school-districts edfacts assessments race year, grade_edfacts 2009–2018
school-districts edfacts assessments sex year, grade_edfacts 2009–2018
school-districts edfacts assessments special-populations year, grade_edfacts 2009–2018
school-districts edfacts grad-rates NA year 2010–2018
school-districts saipe NA NA year 1995, 1997, 1999–2018
schools ccd directory NA year 1986–2020
schools ccd enrollment NA year, grade 1986–2020
schools ccd enrollment race year, grade 1986–2020
schools ccd enrollment race, sex year, grade 1986–2020
schools ccd enrollment sex year, grade 1986–2020
schools crdc algebra1 disability, sex year 2011, 2013, 2015, 2017
schools crdc algebra1 lep, sex year 2011, 2013, 2015, 2017
schools crdc algebra1 race, sex year 2011, 2013, 2015, 2017
schools crdc ap-exams disability, sex year 2011, 2013, 2015, 2017
schools crdc ap-exams lep, sex year 2011, 2013, 2015, 2017
schools crdc ap-exams race, sex year 2011, 2013, 2015, 2017
schools crdc ap-ib-enrollment disability, sex year 2011, 2013, 2015, 2017
schools crdc ap-ib-enrollment lep, sex year 2011, 2013, 2015, 2017
schools crdc ap-ib-enrollment race, sex year 2011, 2013, 2015, 2017
schools crdc chronic-absenteeism disability, sex year 2013, 2015
schools crdc chronic-absenteeism lep, sex year 2013, 2015
schools crdc chronic-absenteeism race, sex year 2013, 2015
schools crdc credit-recovery NA year 2015, 2017
schools crdc directory NA year 2011, 2013, 2015, 2017
schools crdc discipline-instances NA year 2015, 2017
schools crdc discipline disability, lep, sex year 2011, 2013, 2015, 2017
schools crdc discipline disability, race, sex year 2011, 2013, 2015, 2017
schools crdc discipline disability, sex year 2011, 2013, 2015, 2017
schools crdc dual-enrollment disability, sex year 2013, 2015, 2017
schools crdc dual-enrollment lep, sex year 2013, 2015, 2017
schools crdc dual-enrollment race, sex year 2013, 2015, 2017
schools crdc enrollment disability, sex year 2011, 2013, 2015, 2017
schools crdc enrollment lep, sex year 2011, 2013, 2015, 2017
schools crdc enrollment race, sex year 2011, 2013, 2015, 2017
schools crdc harassment-or-bullying allegations year 2013, 2015, 2017
schools crdc harassment-or-bullying disability, sex year 2011, 2013, 2015, 2017
schools crdc harassment-or-bullying lep, sex year 2011, 2013, 2015, 2017
schools crdc harassment-or-bullying race, sex year 2011, 2013, 2015, 2017
schools crdc math-and-science disability, sex year 2011, 2013, 2015, 2017
schools crdc math-and-science lep, sex year 2011, 2013, 2015, 2017
schools crdc math-and-science race, sex year 2011, 2013, 2015, 2017
schools crdc offenses NA year 2015, 2017
schools crdc offerings NA year 2011, 2013, 2015, 2017
schools crdc restraint-and-seclusion disability, lep, sex year 2011, 2013, 2015, 2017
schools crdc restraint-and-seclusion disability, race, sex year 2011, 2013, 2015, 2017
schools crdc restraint-and-seclusion disability, sex year 2011, 2013, 2015, 2017
schools crdc restraint-and-seclusion instances year 2013, 2015, 2017
schools crdc retention disability, sex year, grade 2011, 2013, 2015, 2017
schools crdc retention lep, sex year, grade 2011, 2013, 2015, 2017
schools crdc retention race, sex year, grade 2011, 2013, 2015, 2017
schools crdc sat-act-participation disability, sex year 2011, 2013, 2015, 2017
schools crdc sat-act-participation lep, sex year 2011, 2013, 2015, 2017
schools crdc sat-act-participation race, sex year 2011, 2013, 2015, 2017
schools crdc school-finance NA year 2011, 2013, 2015, 2017
schools crdc suspensions-days disability, sex year 2015, 2017
schools crdc suspensions-days lep, sex year 2015, 2017
schools crdc suspensions-days race, sex year 2015, 2017
schools crdc teachers-staff NA year 2011, 2013, 2015, 2017
schools edfacts assessments NA year, grade_edfacts 2009–2018
schools edfacts assessments race year, grade_edfacts 2009–2018
schools edfacts assessments sex year, grade_edfacts 2009–2018
schools edfacts assessments special-populations year, grade_edfacts 2009–2018
schools edfacts grad-rates NA year 2010–2018
schools meps NA NA year 2013–2018
schools nhgis census-1990 NA year 1986–2020
schools nhgis census-2000 NA year 1986–2020
schools nhgis census-2010 NA year 1986–2020

Main Filters

Due to the way the API is set-up, the variables listed within ‘main filters’ are the fastest way to subset an API call.

In addition to year, the other main filters for certain endpoints accept the following values:

Grade

Filter Argument Grade
grade = 'grade-pk' Pre-K
grade = 'grade-k' Kindergarten
grade = 'grade-1' Grade 1
grade = 'grade-2' Grade 2
grade = 'grade-3' Grade 3
grade = 'grade-4' Grade 4
grade = 'grade-5' Grade 5
grade = 'grade-6' Grade 6
grade = 'grade-7' Grade 7
grade = 'grade-8' Grade 8
grade = 'grade-9' Grade 9
grade = 'grade-10' Grade 10
grade = 'grade-11' Grade 11
grade = 'grade-12' Grade 12
grade = 'grade-13' Grade 13
grade = 'grade-14' Adult Education
grade = 'grade-15' Ungraded
grade = 'grade-99' Total

Level of Study

Filter Argument Level of Study
level_of_study = 'undergraduate' Undergraduate
level_of_study = 'graduate' Graduate
level_of_study = 'first-professional' First Professional
level_of_study = 'post-baccalaureate' Post-baccalaureate
level_of_study = '99' Total

Examples

Let’s build up some examples, from the following set of endpoints.

Level Source Topic Subtopic Main Filters Years Available
schools ccd enrollment NA year, grade 1986–2020
schools ccd enrollment race year, grade 1986–2020
schools ccd enrollment race, sex year, grade 1986–2020
schools ccd enrollment sex year, grade 1986–2020
schools crdc enrollment disability, sex year 2011, 2013, 2015, 2017
schools crdc enrollment lep, sex year 2011, 2013, 2015, 2017
schools crdc enrollment race, sex year 2011, 2013, 2015, 2017

The following will return a data.frame across all years and grades:

library(educationdata)
df <- get_education_data(level = 'schools', 
                         source = 'ccd', 
                         topic = 'enrollment')

Note that this endpoint is also callable by certain subtopic variables:

These variables can be added to the subtopic argument:

df <- get_education_data(level = 'schools', 
                         source = 'ccd', 
                         topic = 'enrollment', 
                         subtopic = list('race', 'sex'))

You may also filter the results of an API call. In this case year and grade will provide the most time-efficient subsets, and can be vectorized:

df <- get_education_data(level = 'schools', 
                         source = 'ccd', 
                         topic = 'enrollment', 
                         subtopic = list('race', 'sex'),
                         filters = list(year = 2008,
                                        grade = 9:12))

Additional variables can also be passed to filters to subset further:

df <- get_education_data(level = 'schools', 
                         source = 'ccd', 
                         topic = 'enrollment', 
                         subtopic = list('race', 'sex'),
                         filters = list(year = 2008,
                                        grade = 9:12,
                                        ncessch = '3406060001227'))

The add_labels flag will map variables to a factor from their labels in the API.

df <- get_education_data(level = 'schools', 
                         source = 'ccd', 
                         topic = 'enrollment', 
                         subtopic = list('race', 'sex'),
                         filters = list(year = 2008,
                                        grade = 9:12,
                                        ncessch = '340606000122'),
                         add_labels = TRUE)

Finally, the csv flag can be set to download the full .csv data frame. In general, the csv functionality is much faster when retrieving the full data frame (or a large subset) and much slower when retrieving a small subset of a data frame (especially ones with a lot of filters added). In this example, the full csv for 2008 must be downloaded and then subset to the 96 observations.

df <- get_education_data(level = 'schools', 
                         source = 'ccd', 
                         topic = 'enrollment', 
                         subtopic = list('race', 'sex'),
                         filters = list(year = 2008,
                                        grade = 9:12,
                                        ncessch = '340606000122'),
                         add_labels = TRUE,
                         csv = TRUE)

Summary Endpoints

You can access the summary endpoint functionality using the get_education_data_summary() function.

df <- get_education_data_summary(
    level = "schools",
    source = "ccd",
    topic = "enrollment",
    stat = "sum",
    var = "enrollment",
    by = "fips",
    filters = list(fips = 6:8, year = 2004:2005)
)

In this example, we take the schools/ccd/enrollment endpoint and retrieve the sum of enrollment by fips code, filtered to fips codes 6, 7, 8 for the years 2004 and 2005.

The syntax largely follows the original syntax of get_education_data(): with three new arguments:

Some endpoints are further broken out by subtopic. These can be specified using the subtopic option.

df <- get_education_data_summary(
    level = "schools",
    source = "crdc",
    topic = "harassment-or-bullying",
    subtopic = "allegations",
    stat = "sum",
    var = "allegations_harass_sex",
    by = "fips"
)

Note that only some endpoints have an applicable subtopic, and this list is slightly different from the syntax of the full data API. Endpoints with subtopics for the summary endpoint functionality include:

For more information on the summary endpoint functionality, see the full API documentation.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.