The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Package overview

This vignette provides a brief overview of the most important functions in eia. Other vignettes go into greater depth on specific topics and API endpoints.

API key

Register a key with EIA

Obtaining an API key is easy, and free!

Pulling data from the US Energy Information Administration (EIA) API requires a registered API key. A key can be obtained at no cost here. A valid email and agreement to the API Terms of Service is required to obtain a key.

It is important to store the API key somewhere secure. Do not commit it to a repository or otherwise share it. For example, one option is to store it in the .Renviron file.

Key storage and retrieval

While the key argument can be provided to every API function call, it is not necessary. There are “get” and “set” helpers available to make using eia functions a more seamless experience.

eia_set_key() provides the option of storing the key for the duration of the R session.

library(eia)
# eia_set_key("yourkey")
# eia_get_key() # retrieve it

If the key already exists in the system environment and the plan is to pass key to functions explicitly, then start as follows.

key <- Sys.getenv("EIA_KEY")
# or:
key <- eia_get_key()

In general, however, if the key is set globally - such as in .Renviron - then no further action regarding the key is required when using the package. See the vignette on API details for more information about all the available options for key storage.

EIA directory

Once the fully registered EIA API key is obtained and properly stored in the active R session, by whichever method preferred, the ability to explore the API directory (folder structure) and obtain the data within is set.

Note, the EIA’s APIv2 has been redesigned to be more human-readable friendly; and, rather than rely on numeric ID values, it is now built around a self-searchable folder structure where the ID values are now just natural language, i.e. words.

Here is the top-level directory information:

eia_dir()
#> # A tibble: 14 × 3
#>    id                name                            description                                                                        
#>    <chr>             <chr>                           <chr>                                                                              
#>  1 coal              Coal                            EIA coal energy data                                                               
#>  2 crude-oil-imports Crude Oil Imports               Crude oil imports by country to destination, includes type, grade, quantity.  Sour…
#>  3 electricity       Electricity                     EIA electricity survey data                                                        
#>  4 international     International                   Country level production, consumption, imports, exports by energy source (petroleu…
#>  5 natural-gas       Natural Gas                     EIA natural gas survey data                                                        
#>  6 nuclear-outages   Nuclear Outages                 EIA nuclear outages survey data                                                    
#>  7 petroleum         Petroleum                       EIA petroleum gas survey data                                                      
#>  8 seds              State Energy Data System (SEDS) Estimated production, consumption, price, and expenditure data for all energy sour…
#>  9 steo              Short Term Energy Outlook       Monthly short term (18 month) projections using STEO model.  Report and interactiv…
#> 10 densified-biomass Densified Biomass               EIA densified biomass data                                                         
#> 11 total-energy      Total Energy                    These data represent the most recent comprehensive energy statistics integrated ac…
#> 12 aeo               Annual Energy Outlook           Annual U.S. projections using National Energy Modelling System (NEMS) for release …
#> 13 ieo               International Energy Outlook    Annual international projections using the World Energy Projection System (WEPS) m…
#> 14 co2-emissions     State CO2 Emissions             EIA CO2 Emissions data

Navigate deeper into this directory by supplying a folder id (e.g. id = “electricity”).

eia_dir("electricity")
#> # A tibble: 6 × 3
#>   id                              name                                                                       description                
#>   <chr>                           <chr>                                                                      <chr>                      
#> 1 retail-sales                    Electricity Sales to Ultimate Customers                                    "Electricity sales to ulti…
#> 2 electric-power-operational-data Electric Power Operations (Annual and Monthly)                             "Monthly and annual electr…
#> 3 rto                             Electric Power Operations (Daily and Hourly)                               "Hourly and daily electric…
#> 4 state-electricity-profiles      State Specific Data                                                        "State Specific Data"      
#> 5 operating-generator-capacity    Inventory of Operable Generators                                           "Inventory of operable gen…
#> 6 facility-fuel                   Electric Power Operations for Individual Power Plants (Annual and Monthly) "Annual and monthly electr…

And, because APIv2 is a directory listing, to go any deeper simply requires appending the next id (folder name) separated by "/", where the first folder ID in from the top-level directory is “electricity” and the next deeper folder ID from there is “retail-sales”. As a result, supply “electricity/retail-sales” to the first argument in eia_dir(), as shown below, to see the next next layer in.

eia_dir("electricity/retail-sales")

Finally, the end of the directory path has been reached, as shown by the message provided in the console output above; i.e. there are no more sub-folders to explore. This message is prompting to explore the available data at the end of this directory path with eia_metadata().

Note on output format

The default is to return tidy data in a tibble data frame. For eia_dir(), set tidy = FALSE to return a list as returned by jsonlite::fromJSON. Additionally, set tidy = NA to return a raw character string of the JSON payload.

eia_dir(tidy = FALSE)
#> $response
#> $response$id
#> [1] ""
#> 
#> $response$name
#> [1] ""
#> 
#> $response$description
#> [1] ""
#> 
#> $response$routes
#>                   id                            name
#> 1               coal                            Coal
#> 2  crude-oil-imports               Crude Oil Imports
#> 3        electricity                     Electricity
#> 4      international                   International
#> 5        natural-gas                     Natural Gas
#> 6    nuclear-outages                 Nuclear Outages
#> 7          petroleum                       Petroleum
#> 8               seds State Energy Data System (SEDS)
#> 9               steo       Short Term Energy Outlook
#> 10 densified-biomass               Densified Biomass
#> 11      total-energy                    Total Energy
#> 12               aeo           Annual Energy Outlook
#> 13               ieo    International Energy Outlook
#> 14     co2-emissions             State CO2 Emissions
#>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              description
#> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   EIA coal energy data
#> 2                                                                                                                                                                                                                                                                                                          Crude oil imports by country to destination, \r\n        includes type, grade, quantity.  Source: EIA-814  Interactive data \r\n        product:  www.eia.gov/petroleum/imports/companylevel/
#> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                            EIA electricity survey data
#> 4                                                                                                                                                                                                                                                                                        Country level production, consumption, imports, exports by energy source (petroleum, natural gas, electricity, renewable, etc.)  \r\n        Interactive product:  https://www.eia.gov/international/data/world
#> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                            EIA natural gas survey data
#> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                        EIA nuclear outages survey data
#> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                          EIA petroleum gas survey data
#> 8                                                                                                                                                                                                                                        Estimated production, consumption, price, and expenditure data for all energy sources by state and sector.  \r\n        Source:  https://www.eia.gov/state/seds/seds-technical-notes-complete.php  \r\n        Product:  SEDS (https://www.eia.gov/state/seds/)
#> 9                                                                                                                                                                                                                                                                                                                                                     Monthly short term (18 month) projections using STEO model.  \r\n        Report and interactive projection data browser:  STEO (www.eia.gov/steo/)
#> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                            EIA densified biomass data
#> 11 These data represent the most recent comprehensive energy statistics integrated across all energy sources.  The data includes total energy production, consumption, stocks, and trade; energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and carbon dioxide emissions; and data unit conversions values.  Source: https://www.eia.gov/totalenergy/data/monthly/pdf/mer_a_doc.pdf  Report:  MER (https://www.eia.gov/totalenergy/data/monthly/)
#> 12                                                                                                                                                                                                                                                                                                                      Annual U.S. projections using National Energy Modelling System (NEMS) for release year.  Report, documentation, and interactive projection data browser:  AEO (www.eia.gov/aeo/)
#> 13                                                                                                                                                                                                                                                                                                                     Annual international projections using the World Energy Projection System (WEPS) model for release year.  Report and interactive projection data browser:  IEO (www.eia.gov/ieo/)
#> 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                EIA CO2 Emissions data
#> 
#> 
#> $request
#> $request$command
#> [1] "/v2/"
#> 
#> $request$params
#> $request$params$api_key
#> [1] "dUlpeaO4fNAmo9nJcgIhtCfBN5VtiZnoZDzuYGuG"
#> 
#> 
#> 
#> $apiVersion
#> [1] "2.1.4"

eia_dir(tidy = NA)
#> [1] "{\"response\":{\"id\":\"\",\"name\":\"\",\"description\":\"\",\"routes\":[{\"id\":\"coal\",\"name\":\"Coal\",\"description\":\"EIA coal energy data\"},{\"id\":\"crude-oil-imports\",\"name\":\"Crude Oil Imports\",\"description\":\"Crude oil imports by country to destination, \\r\\n        includes type, grade, quantity.  Source: EIA-814  Interactive data \\r\\n        product:  www.eia.gov\\/petroleum\\/imports\\/companylevel\\/\"},{\"id\":\"electricity\",\"name\":\"Electricity\",\"description\":\"EIA electricity survey data\"},{\"id\":\"international\",\"name\":\"International\",\"description\":\"Country level production, consumption, imports, exports by energy source (petroleum, natural gas, electricity, renewable, etc.)  \\r\\n        Interactive product:  https:\\/\\/www.eia.gov\\/international\\/data\\/world\"},{\"id\":\"natural-gas\",\"name\":\"Natural Gas\",\"description\":\"EIA natural gas survey data\"},{\"id\":\"nuclear-outages\",\"name\":\"Nuclear Outages\",\"description\":\"EIA nuclear outages survey data\"},{\"id\":\"petroleum\",\"name\":\"Petroleum\",\"description\":\"EIA petroleum gas survey data\"},{\"id\":\"seds\",\"name\":\"State Energy Data System (SEDS)\",\"description\":\"Estimated production, consumption, price, and expenditure data for all energy sources by state and sector.  \\r\\n        Source:  https:\\/\\/www.eia.gov\\/state\\/seds\\/seds-technical-notes-complete.php  \\r\\n        Product:  SEDS (https:\\/\\/www.eia.gov\\/state\\/seds\\/)\"},{\"id\":\"steo\",\"name\":\"Short Term Energy Outlook\",\"description\":\"Monthly short term (18 month) projections using STEO model.  \\r\\n        Report and interactive projection data browser:  STEO (www.eia.gov\\/steo\\/)\"},{\"id\":\"densified-biomass\",\"name\":\"Densified Biomass\",\"description\":\"EIA densified biomass data\"},{\"id\":\"total-energy\",\"name\":\"Total Energy\",\"description\":\"These data represent the most recent comprehensive energy statistics integrated across all energy sources.  The data includes total energy production, consumption, stocks, and trade; energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and carbon dioxide emissions; and data unit conversions values.  Source: https:\\/\\/www.eia.gov\\/totalenergy\\/data\\/monthly\\/pdf\\/mer_a_doc.pdf  Report:  MER (https:\\/\\/www.eia.gov\\/totalenergy\\/data\\/monthly\\/)\"},{\"id\":\"aeo\",\"name\":\"Annual Energy Outlook\",\"description\":\"Annual U.S. projections using National Energy Modelling System (NEMS) for release year.  Report, documentation, and interactive projection data browser:  AEO (www.eia.gov\\/aeo\\/)\"},{\"id\":\"ieo\",\"name\":\"International Energy Outlook\",\"description\":\"Annual international projections using the World Energy Projection System (WEPS) model for release year.  Report and interactive projection data browser:  IEO (www.eia.gov\\/ieo\\/)\"},{\"id\":\"co2-emissions\",\"name\":\"State CO2 Emissions\",\"description\":\"EIA CO2 Emissions data\"}]},\"request\":{\"command\":\"\\/v2\\/\",\"params\":{\"api_key\":\"dUlpeaO4fNAmo9nJcgIhtCfBN5VtiZnoZDzuYGuG\"}},\"apiVersion\":\"2.1.4\"}"

EIA metadata

Now back to the example regarding the Retail Sales of Electricity…

eia_metadata() provides as the name suggests: metadata on a given set of data provided by a terminal (i.e. final) directory path. This includes the following:

eia_metadata("electricity/retail-sales")
#> $Name
#> [1] "Electricity Sales to Ultimate Customers"
#> 
#> $Description
#> [1] "Electricity sales to ultimate customer by state and sector (number of customers, average price, revenue, and megawatthours of sales).  \n    Sources: Forms EIA-826, EIA-861, EIA-861M"
#> 
#> $Data
#> # A tibble: 4 × 3
#>   id        alias                                              units                 
#>   <chr>     <chr>                                              <chr>                 
#> 1 revenue   Revenue from Sales to Ultimate Customers           million dollars       
#> 2 sales     Megawatthours Sold to Utlimate Customers           million kilowatthours 
#> 3 price     Average Price of Electricity to Utlimate Customers cents per kilowatthour
#> 4 customers Number of Ultimate Customers                       number of customers   
#> 
#> $Facets
#> # A tibble: 2 × 2
#>   id       description          
#>   <chr>    <chr>                
#> 1 stateid  State / Census Region
#> 2 sectorid Sector               
#> 
#> $Frequency
#> # A tibble: 3 × 4
#>   id        description                            query format 
#>   <chr>     <chr>                                  <chr> <chr>  
#> 1 monthly   One data point for each month.         M     YYYY-MM
#> 2 quarterly One data point every 3 months.         Q     YYYY-QQ
#> 3 annual    One data point for each calendar year. A     YYYY   
#> 
#> $Defaults
#> # A tibble: 1 × 2
#>   format  frequency
#>   <chr>   <chr>    
#> 1 YYYY-MM monthly  
#> 
#> $Period
#> # A tibble: 1 × 2
#>   start   end    
#>   <chr>   <chr>  
#> 1 2001-01 2023-08

EIA data

Data structure

The metadata from above can be used to have a better understanding of what data is available and how that data can be pulled from the API using eia_data(). However, simply supplying the above directory path from above (“electricity/retail-sales”) will only provide the data structure, i.e. no meaningful data values will be present (more on this below).

eia_data("electricity/retail-sales") |> head()
#> # A tibble: 6 × 5
#>   period  stateid stateDescription   sectorid sectorName    
#>   <chr>   <chr>   <chr>              <chr>    <chr>         
#> 1 2008-07 WSC     West South Central IND      industrial    
#> 2 2008-07 WSC     West South Central OTH      other         
#> 3 2008-07 WSC     West South Central RES      residential   
#> 4 2008-07 WSC     West South Central TRA      transportation
#> 5 2008-07 MTN     Mountain           ALL      all sectors   
#> 6 2008-07 MTN     Mountain           COM      commercial

Note the console warning that appears. The API can only provide a maximum of 5000 records. If there are more data available than returned, a warning message like above will be provided informing the user of their “incomplete return”.

Data values

“Data Values” are just the names of the columns that hold the specific, respective data value. For this example, the overall number of power units sold to customers is of main interest, and the associated column name for this information is "sales".

To get data values, e.g. sales, supply the proper column name id, as provided in the Data Values section of the eia_metadata() console output, again, in this case "sales".

eia_data("electricity/retail-sales", data = "sales", length = 6) # length = 6 instead of `|> head()`
#> # A tibble: 6 × 7
#>   period  stateid stateDescription   sectorid sectorName        sales `sales-units`        
#>   <chr>   <chr>   <chr>              <chr>    <chr>             <dbl> <chr>                
#> 1 2008-07 WSC     West South Central IND      industrial     14800.   million kilowatthours
#> 2 2008-07 WSC     West South Central OTH      other             NA    million kilowatthours
#> 3 2008-07 WSC     West South Central RES      residential    22406.   million kilowatthours
#> 4 2008-07 WSC     West South Central TRA      transportation     7.41 million kilowatthours
#> 5 2008-07 MTN     Mountain           ALL      all sectors    27756.   million kilowatthours
#> 6 2008-07 MTN     Mountain           COM      commercial      9123.   million kilowatthours

See now that sales data values have been right-column-bound to the data structure as originally provided by eia_data("electricity/retail-sales").

EIA facets

Getting facet values

But what if data is wanted for just one sector, say “residential”? This is where facets arrive, and for any given terminal directory, the facet values can be found with eia_facets() by supplying the terminal directory path and facet id, the latter of which can, again, be found from the console output of eia_metadata().

eia_facets("electricity/retail-sales", "sectorid")
#> # A tibble: 6 × 3
#>   id    name           alias               
#>   <chr> <chr>          <chr>               
#> 1 RES   residential    (RES) residential   
#> 2 COM   commercial     (COM) commercial    
#> 3 ALL   all sectors    (ALL) all sectors   
#> 4 OTH   other          (OTH) other         
#> 5 TRA   transportation (TRA) transportation
#> 6 IND   industrial     (IND) industrial
# or
eia_facets("electricity/retail-sales", "stateid")
#> # A tibble: 62 × 3
#>    id    name               alias                           
#>    <chr> <chr>              <chr>                           
#>  1 MA    Massachusetts      (MA) Massachusetts              
#>  2 VT    Vermont            (VT) Vermont                    
#>  3 WA    Washington         (WA) Washington                 
#>  4 HI    Hawaii             (HI) Hawaii                     
#>  5 WNC   West North Central Region: (WNC) West North Central
#>  6 NC    North Carolina     (NC) North Carolina             
#>  7 ENC   East North Central Region: (ENC) East North Central
#>  8 MTN   Mountain           Region: (MTN) Mountain          
#>  9 MD    Maryland           (MD) Maryland                   
#> 10 VA    Virginia           (VA) Virginia                   
#> # … with 52 more rows

The above output provides the ids for both the State/Region and Sector that will be required for obtaining Retail Sales for Residential customers in Vermont.

Using facet values

Now, the ID values from the above output can be used to further limit the returned data with the facets argument in eia_data().

eia_data(
  dir = "electricity/retail-sales",
  data = "sales",
  facets = list(sectorid = "RES", stateid = "VT"),
  length = 6
)
#> # A tibble: 6 × 7
#>   period  stateid stateDescription sectorid sectorName  sales `sales-units`        
#>   <chr>   <chr>   <chr>            <chr>    <chr>       <dbl> <chr>                
#> 1 2008-07 VT      Vermont          RES      residential  188. million kilowatthours
#> 2 2010-07 VT      Vermont          RES      residential  198. million kilowatthours
#> 3 2023-08 VT      Vermont          RES      residential  180. million kilowatthours
#> 4 2016-02 VT      Vermont          RES      residential  185. million kilowatthours
#> 5 2015-05 VT      Vermont          RES      residential  143. million kilowatthours
#> 6 2010-06 VT      Vermont          RES      residential  158. million kilowatthours

If multiple data values (sales and price) or facets (residential and commercial) are of interest, simply concatenate these entries with c(), as shown below:

eia_data(
  dir = "electricity/retail-sales",
  data = c("sales", "price"),
  facets = list(sectorid = c("RES", "COM"), stateid = "VT"),
  length = 6
)
#> # A tibble: 6 × 9
#>   period  stateid stateDescription sectorid sectorName  sales price `sales-units`         `price-units`         
#>   <chr>   <chr>   <chr>            <chr>    <chr>       <dbl> <dbl> <chr>                 <chr>                 
#> 1 2008-07 VT      Vermont          COM      commercial   187.  12.5 million kilowatthours cents per kilowatthour
#> 2 2008-07 VT      Vermont          RES      residential  188.  14.5 million kilowatthours cents per kilowatthour
#> 3 2010-07 VT      Vermont          COM      commercial   189.  13.3 million kilowatthours cents per kilowatthour
#> 4 2010-07 VT      Vermont          RES      residential  198.  15.4 million kilowatthours cents per kilowatthour
#> 5 2023-08 VT      Vermont          COM      commercial   174.  17.3 million kilowatthours cents per kilowatthour
#> 6 2023-08 VT      Vermont          RES      residential  180.  20.4 million kilowatthours cents per kilowatthour

Frequency-, time-subsetting, and sorting

This electric retail sales data is available in multiple frequencies and for a defined date range, as shown below:

#> Frequency:
#>          id                            description query  format
#> 1   monthly         One data point for each month.     M YYYY-MM
#> 2 quarterly         One data point every 3 months.     Q YYYY-QQ
#> 3    annual One data point for each calendar year.     A    YYYY
#> 
#> Date Range:
#>    2001-01 to 2023-08

The default frequency for this data is monthly, but maybe annualized data for a truncated time frame - say the last five years - is all that is needed. The ability to alter the granularity or truncate time frame of the returned data is provided by the freq, start, and end arguments of eia_data().

eia_data(
  dir = "electricity/retail-sales",
  data = c("sales", "price"),
  facets = list(sectorid = c("RES", "COM"), stateid = "VT"),
  freq = "annual",
  start = "2013",
  end = "2023"
)
#> # A tibble: 20 × 9
#>    period stateid stateDescription sectorid sectorName  sales price `sales-units`         `price-units`         
#>     <int> <chr>   <chr>            <chr>    <chr>       <dbl> <dbl> <chr>                 <chr>                 
#>  1   2018 VT      Vermont          COM      commercial  2004.  15.2 million kilowatthours cents per kilowatthour
#>  2   2018 VT      Vermont          RES      residential 2116.  18.0 million kilowatthours cents per kilowatthour
#>  3   2015 VT      Vermont          COM      commercial  2011.  14.5 million kilowatthours cents per kilowatthour
#>  4   2015 VT      Vermont          RES      residential 2089.  17.1 million kilowatthours cents per kilowatthour
#>  5   2014 VT      Vermont          COM      commercial  2031.  14.6 million kilowatthours cents per kilowatthour
#>  6   2017 VT      Vermont          RES      residential 2023.  17.7 million kilowatthours cents per kilowatthour
#>  7   2017 VT      Vermont          COM      commercial  1977.  14.6 million kilowatthours cents per kilowatthour
#>  8   2021 VT      Vermont          COM      commercial  1867.  16.6 million kilowatthours cents per kilowatthour
#>  9   2021 VT      Vermont          RES      residential 2174.  19.3 million kilowatthours cents per kilowatthour
#> 10   2022 VT      Vermont          COM      commercial  1916.  17.3 million kilowatthours cents per kilowatthour
#> 11   2022 VT      Vermont          RES      residential 2187.  19.9 million kilowatthours cents per kilowatthour
#> 12   2014 VT      Vermont          RES      residential 2121.  17.5 million kilowatthours cents per kilowatthour
#> 13   2020 VT      Vermont          COM      commercial  1806.  16.4 million kilowatthours cents per kilowatthour
#> 14   2020 VT      Vermont          RES      residential 2157.  19.5 million kilowatthours cents per kilowatthour
#> 15   2013 VT      Vermont          RES      residential 2125.  17.1 million kilowatthours cents per kilowatthour
#> 16   2013 VT      Vermont          COM      commercial  2017.  14.7 million kilowatthours cents per kilowatthour
#> 17   2019 VT      Vermont          COM      commercial  1934.  16.0 million kilowatthours cents per kilowatthour
#> 18   2019 VT      Vermont          RES      residential 2082.  17.7 million kilowatthours cents per kilowatthour
#> 19   2016 VT      Vermont          COM      commercial  2014.  14.5 million kilowatthours cents per kilowatthour
#> 20   2016 VT      Vermont          RES      residential 2056.  17.4 million kilowatthours cents per kilowatthour

As shown above, the returned data frame has 20 records - 10 annual observations for each sector (residential and commercial). However, notice the hectic ordering of the returned data. Thankfully, the API service can sort this in either ascending or descending order using the sort argument.

Similar to facets, sort requires a named list object with two components:

eia_data(
  dir = "electricity/retail-sales",
  data = c("sales", "price"),
  facets = list(sectorid = c("RES", "COM"), stateid = "VT"),
  freq = "annual",
  start = "2013",
  end = "2023",
  sort = list(cols = c("period", "sectorid"), order = "asc")
)
#> # A tibble: 20 × 9
#>    period stateid stateDescription sectorid sectorName  sales price `sales-units`         `price-units`         
#>     <int> <chr>   <chr>            <chr>    <chr>       <dbl> <dbl> <chr>                 <chr>                 
#>  1   2013 VT      Vermont          COM      commercial  2017.  14.7 million kilowatthours cents per kilowatthour
#>  2   2013 VT      Vermont          RES      residential 2125.  17.1 million kilowatthours cents per kilowatthour
#>  3   2014 VT      Vermont          COM      commercial  2031.  14.6 million kilowatthours cents per kilowatthour
#>  4   2014 VT      Vermont          RES      residential 2121.  17.5 million kilowatthours cents per kilowatthour
#>  5   2015 VT      Vermont          COM      commercial  2011.  14.5 million kilowatthours cents per kilowatthour
#>  6   2015 VT      Vermont          RES      residential 2089.  17.1 million kilowatthours cents per kilowatthour
#>  7   2016 VT      Vermont          COM      commercial  2014.  14.5 million kilowatthours cents per kilowatthour
#>  8   2016 VT      Vermont          RES      residential 2056.  17.4 million kilowatthours cents per kilowatthour
#>  9   2017 VT      Vermont          COM      commercial  1977.  14.6 million kilowatthours cents per kilowatthour
#> 10   2017 VT      Vermont          RES      residential 2023.  17.7 million kilowatthours cents per kilowatthour
#> 11   2018 VT      Vermont          COM      commercial  2004.  15.2 million kilowatthours cents per kilowatthour
#> 12   2018 VT      Vermont          RES      residential 2116.  18.0 million kilowatthours cents per kilowatthour
#> 13   2019 VT      Vermont          COM      commercial  1934.  16.0 million kilowatthours cents per kilowatthour
#> 14   2019 VT      Vermont          RES      residential 2082.  17.7 million kilowatthours cents per kilowatthour
#> 15   2020 VT      Vermont          COM      commercial  1806.  16.4 million kilowatthours cents per kilowatthour
#> 16   2020 VT      Vermont          RES      residential 2157.  19.5 million kilowatthours cents per kilowatthour
#> 17   2021 VT      Vermont          COM      commercial  1867.  16.6 million kilowatthours cents per kilowatthour
#> 18   2021 VT      Vermont          RES      residential 2174.  19.3 million kilowatthours cents per kilowatthour
#> 19   2022 VT      Vermont          COM      commercial  1916.  17.3 million kilowatthours cents per kilowatthour
#> 20   2022 VT      Vermont          RES      residential 2187.  19.9 million kilowatthours cents per kilowatthour

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.