The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

eimpute: Efficiently IMPUTE Large Scale Incomplete Matrix

Introdution

Matrix completion is a procedure for imputing the missing elements in matrices by using the information of observed elements. This procedure can be visualized as:

Matrix completion has attracted a lot of attention, it is widely applied in: - tabular data imputation: recover the missing elements in data table; - recommend system: estimate users’ potantial preference for items pending purchased; - image inpainting: inpaint the missing elements in digit images.

Software

A computationally efficient R package, eimpute is developed for matrix completion.

Installation

Install the stable version from CRAN:

install.packages("eimpute")

Advantage

In eimpute, matrix completion problem is solved by iteratively performing low-rank approximation and data calibration, which enjoy two admirable advantages: - unbiased low-rank approximation for incomplete matrix - less time consumption via truncated SVD Moreover, eimpute also supports flexible data standardization.

Compare eimpute and softimpute in systhesis datasets \(X_{m \times m}\) with \(p\) proportion missing observations:

In high dimension case, als method in softimpute is a little faster than eimpute in low proportion of missing observations, as the proportion of missing observations increase, rsvd method in eimpute have a better performance than softimpute in time cost and test error. Compare with two method in **eimpute*, rsvd method is better than tsvd in time cost.

References

Bug report

Send an email to Zhe Gao at gaozh8@mail.ustc.edu.cn

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.