The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Kernel smoothers are essential tools for data analysis due to their ability to convey complex statistical information with concise graphical visualisations. The most widely used kernel smoother is the kernel density estimator (KDE), though there remain some important gaps in the implementation in R
for specialised data types, most notably for tibbles (tidy data) within the tidyverse, and for simple features (geospatial data) within Geographical Information Systems (GIS) analysis. The tidy_kde
and st_kde
functions in the eks
package fills in these gaps.
The data set we focus on is the crabs
data set from the MASS
package, with the variables FL
frontal lobe size (mm), CW
carapace width (mm) and sp
species (B
for blue, O
for orange).
library(eks)
library(colorspace)
library(ggplot2)
library(dplyr)
## crabs data
data(crabs, package="MASS")
select(crabs, FL, CW)
crabs2 <- "Frontal lobe size (mm)"
xlab <- "Carapace width (mm)" ylab <-
The KDE for tidy data is computed by tidy_kde
. From the output, the scatter plot of the data is generated by geom_point_ks
and the contour plot of the KDE by geom_contour_ks
. The bimodal structure of the data distribution, corresponding to the two species, is clearly visible from the KDE plot from tidy_kde
. This is due to the optimal choice of the matrix of smoothing parameters. This optimal smoothing matrix is the plug-in bandwidth computed by ks::Hpi
, and it is suitable for a wide range of data sets. For further details of the computation of the kernel density estimate and the bandwidth, see ?ks::kde
and ?ks::Hpi
.
## KDE contour plot + scatter plot
tidy_kde(crabs2)
tkde2 <- ggplot(tkde2, aes(x=FL, y=CW)) + labs(x=xlab, y=ylab)
gkde2 <-+ geom_point_ks(colour=8) + geom_contour_ks(colour=1) gkde2
On the other hand, the default bandwidth and the resulting KDE computed by ggplot2::geom_density_2d
leads to an oversmoothed KDE which does not reveal the data bimodality.
## geom_density_2d KDE contour plot + scatter plot
ggplot(crabs2, aes(x=FL, y=CW))
mkde2 <-+ geom_point(colour=8) + geom_density_2d(colour=1, bins=4) mkde2
The default choice of the contour levels in the eks
package is based on probability contours. Probability contours offer an intuitive approach to selecting the contour levels that reveal the pertinent characteristics of the data distribution. See Chacon & Duong (2018, Chapter 2.2). Filled contour plots, generated by geom_contour_filled_ks
, can be coloured with an appropriate sequential colour scale. For example, a 25% contour region (dark purple region) is the smallest region that contains 25% of the probability mass defined by the KDE. The 50% contour region consists of the union of the light purple region and the dark purple region, and it contains 50% of the data points etc. Note that the 25% and 50% contour regions of the crabs
KDE are composed of separate, unconnected contour sub-regions.
## KDE filled contour plot
+ geom_contour_filled_ks(colour=1) + scale_fill_discrete_sequential(h1=275) gkde2
As an alternative to these discretised contours, the usual ggplot2::geom_raster
generates a plot with a continuous colour scale.
## KDE continuous colour plot
ggplot(tkde2, aes(x=FL,y=CW)) + geom_raster(aes(fill=estimate), interpolate=TRUE) +
labs(x=xlab, y=ylab) + scale_fill_continuous_sequential(h1=275)
One of the main advantages of ggplot2
is its ability to handle multiple related plots, in this case, KDE plots for each species. The KDE with blue contours is for the B
species, and orange contours for the O
species.
select(crabs, FL, CW, sp)
crabs2g <- group_by(crabs2g, sp)
crabs2g <- tidy_kde(crabs2g)
tkde2g <- ggplot(tkde2g, aes(x=FL, y=CW, group=sp)) + labs(x=xlab, y=ylab,
gkde2g <-colour="Species") + scale_colour_manual(values=c(4, 7))
## superposed KDE contour plots + scatter plots
+ geom_point_ks(colour=8) +
gkde2g geom_contour_ks(aes(colour=sp)) + guides(colour=guide_legend(title="Species"))
We can also display each species KDE on its own set of axes.
## facetted KDE contour plots + scatter plots
+ geom_point_ks(colour=8) +
gkde2g guides(colour=guide_legend(reverse=FALSE)) +
geom_contour_ks(aes(colour=sp)) + facet_wrap(~sp)
The probability contour levels computed in geom_contour_ks
and geom_contour_filled_ks
are relative to the grouping variable. So whilst the same probability 25% level is applied to both groups KDE, the height of 25% contour region for the blue species is 0.0414, and for the orange species it is 0.0318. For a direct comparison, it is useful to have a set of fixed contour heights for all KDEs . A heuristic solution is implemented in contour_breaks
. For the crabs
data, this gives 0.0142, 0.0264, 0.0414. Since the KDE for the B
species exceeds the highest level 0.0414, whereas the O
KDE doesn’t reach this is level, the former KDE is more peaked.
## facetted KDE filled contour plots with fixed contour levels for all facets
contour_breaks(tkde2g)
bkde2g <-+ geom_contour_filled_ks(breaks=bkde2g, colour=1) +
gkde2g scale_fill_discrete_sequential(h1=275) + facet_wrap(~sp)
GIS for geospatial data analysis in R
is implemented in the sf
package, and the eks
package builds on this. To illustrate geospatial KDE, we focus on the grevilleasf
data set in the eks
package. It has 22303 rows, where each row corresponds to an observed grevillea plant in Western Australia. In addition, we utilise wa
, the geospatial polygon for Western Australia. Both of these geospatial data sets are in the EPSG:7850 (GDA2020/MGA zone 50) projection.
library(sf)
## Grevillea data
data(grevilleasf, package="eks")
mutate(grevilleasf, species=factor(species))
grevilleasf <- filter(grevilleasf, name %in% "Grevillea paradoxa")
paradoxa <- filter(grevilleasf, name %in% "Grevillea eryngioides")
eryngioides <- filter(grevilleasf, name %in% c("Grevillea eryngioides",
grevillea_ep <-"Grevillea paradoxa"))
group_by(grevillea_ep, name)
grevillea_ep <- c(165479.3, 1096516.3); ylim <- c(6101931, 7255991)
xlim <-
## WA polygon
data(wa, package="eks")
geom_sf(data=wa, fill=NA, colour=1) gwa <-
Since geospatial data can be visualised with both base R
and ggplot2
graphics engines, we provide code for both: their outputs are similar due to the standardisation of geospatial maps within GIS. Though these plots can’t be mixed due to fundamental differences between the graphical rendering in base R
and ggplot2
. This is the reason that, for example, adding a scale bar requires functions from different packages.
## base R scatter plot
plot(st_geometry(wa), xlim=xlim, ylim=ylim)
plot(st_geometry(eryngioides), add=TRUE, col=3, pch=16, cex=0.5)
plot(st_geometry(paradoxa), add=TRUE, col=6, pch=17, cex=0.5)
::mf_legend(type="symb", val=c("Grevillea eryngioides", "Grevillea paradoxa"),
mapsfpal=c(3,6), pch=16:17, cex=c(1,1), title="Species", pos="topright")
::mf_scale(size=200, lwd=4) mapsf
## geom_sf scatter plot
ggspatial::annotation_scale(data=data.frame(name="Grevillea paradoxa"),
gsc <-location="br", width_hint=0.2, bar_cols=1)
theme_set(ggthemes::theme_map())
theme_update(legend.position=c(0.99,0.99), legend.justification=c(1,1))
ggplot() + gwa + gsc +
geom_sf(data=grevillea_ep, aes(colour=name, shape=name), size=0.5) +
coord_sf(xlim=xlim, ylim=ylim) + scale_colour_manual(values=c(3, 6)) +
guides(colour=guide_legend(title="Species"), shape=guide_legend(title="Species"))
The KDE for geospatial data is computed by st_kde
. The calculations of the KDE, including the bandwidth matrix fo smoothing parameters, are the same as in tidy_kde
. Though, unlike for tidy_kde
where the probability contour regions are computed dynamically in geom_contour_filled_ks
, the 1% to 99% regions are explicitly computed as multipolygons in st_kde
since this conversion can be computationally heavy to execute for each plot. For display, it is a matter of selecting the appropriate contour regions. The quartile contours 25%, 50%, 75% are selected by default in geom_contour_filled_ks
for tidy data. This is also the case for the base R
plot.
st_kde(paradoxa)
skde1 <-
## base R contour plot
plot(st_geometry(wa), xlim=xlim, ylim=ylim)
plot(st_geometry(paradoxa), add=TRUE, pch=16, col=8, cex=0.5)
plot(skde1, add=TRUE, col=NA, border=1, legend=FALSE)
::mf_scale(size=200, lwd=4) mapsf
On the other hand, we can’t replicate exactly the default contour selection in geom_sf
, so we first apply the auxiliary function st_get_contour
to the input of geom_sf
.
## geom_sf contour plot
ggplot(skde1) + gwa + gsc
gs <-+ geom_sf(data=paradoxa, col=8, size=0.5) +
gs geom_sf(data=st_get_contour(skde1), colour=1, fill=NA, show.legend=FALSE) +
coord_sf(xlim=xlim, ylim=ylim) + ggthemes::theme_map()
To generate a filled contour plot, the only required changes are to input an appropriate colour scale function, and for a base R
plot, to set legend=TRUE
since its default value is FALSE
.
## R base filled contour plot
plot(st_geometry(wa), xlim=xlim, ylim=ylim)
plot(skde1, add=TRUE, pal=function(.) { sequential_hcl(n=., h1=275, rev=TRUE) })
::mf_scale(size=200, lwd=4) mapsf
## geom_sf filled contour
+ geom_sf(data=st_get_contour(skde1), aes(fill=label_percent(contlabel))) +
gs scale_fill_discrete_sequential(h1=275) +
coord_sf(xlim=xlim, ylim=ylim) + ggthemes::theme_map()
Since the output from st_kde
is compatible with geom_sf
, then it is easy to generate multiple maps of related geospatial KDEs. For example, KDEs for each Grevillea species, with probability contour levels or with fixed contour levels:
st_kde(grevillea_ep)
skde1g <-
## facetted geom_sf filled contour
ggplot(skde1g) + gwa + gsc
gsg <-+ geom_sf(data=st_get_contour(skde1g), aes(fill=label_percent(contlabel))) +
gsg scale_fill_discrete_sequential(h1=275) +
facet_wrap(~name) + coord_sf(xlim=xlim, ylim=ylim) + ggthemes::theme_map()
## facetted geom_sf filled contour with fixed contour levels for all facets
contour_breaks(skde1g)
bkde1g <-+ geom_sf(data=st_get_contour(skde1g, breaks=bkde1g), aes(fill=contlabel)) +
gsg scale_fill_discrete_sequential(h1=275) + facet_wrap(~name) +
coord_sf(xlim=xlim, ylim=ylim) + ggthemes::theme_map()
Chacon, J. E. and Duong, T. (2018). Multivariate Kernel Smoothing and Its Applications. Chapman & Hall/CRC Press, Boca Raton.
Duong, T. (2022) Statistical visualisation for tidy and geospatial data in R via kernel smoothing methods in the eks package. https://doi.org/10.48550/arXiv.2203.01686
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.