The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
electivity: Algorithms for electivity indices and measures of resource use versus availability ================
Desi Quintans (2019). electivity: Algorithms for Electivity Indices. R package version 1.0.2. https://github.com/DesiQuintans/electivity
This package is essentially Lechowicz (1982) turned into an R package. It includes all algorithms that were described therein plus the example data that was provided for gypsy moth resource utilisation.
Lechowicz, M.J., 1982. The sampling characteristics of electivity indices. Oecologia 52, 22–30. https://doi.org/10.1007/BF00349007
Users are encouraged to read the original paper before deciding which
algorithm is most useful for them. Lechowicz recommended Vanderploeg and
Scavia’s E* index (implemented in this package as
vs_electivity()
) as “the single best, but not perfect,
electivity index” because “E* embodies a measure of the feeder’s
perception of a food’s value as a function of both its abundance and the
abundance of other food types present.” In practice, he found that all
indices returned nearly identical rank orders of preferred hosts except
for Strauss’ linear index (L).
# Installing from CRAN (not yet!)
install.packages(electivity)
# Installing from GitHub
install.packages(remotes)
::install_github("DesiQuintans/electivity")
remotes
library(electivity)
data(moth_distrib) # Table 2 from Lechowicz (1982), raw data
data(moth_elect) # Table 3 from Lechowicz (1982), calculated indices
head(moth_distrib)
## binomen n_indiv dbh_cm_sum larva_mean_sum r p
## 1 Acer_pensylvanicum 1 8.5 0.5 2.86e-05 0.000566
## 2 Acer_rubrum 3 67.7 5.0 2.86e-04 0.004510
## 3 Acer_saccharum 158 2344.0 1342.0 7.68e-02 0.156000
## 4 Acer_spicatum 4 39.2 23.5 1.34e-03 0.002610
## 5 Amelanchier_sp 3 27.4 25.5 1.46e-03 0.001820
## 6 Betula_papyrifera 47 696.3 69.0 3.95e-03 0.046400
head(moth_elect)
## binomen E_i E_prime_i D_i log_Q_i L_i W_i E_star_i
## 1 Acer_pensylvanicum -0.904 0.050 -0.904 -1.297 -0.001 0.006 -0.787
## 2 Acer_rubrum -0.881 0.063 -0.881 -1.199 -0.004 0.008 -0.739
## 3 Acer_saccharum -0.341 0.492 -0.380 -0.347 -0.079 0.061 0.075
## 4 Acer_spicatum -0.320 0.515 -0.321 -0.289 -0.001 0.064 0.098
## 5 Amelanchier_sp -0.111 0.800 -0.112 -0.097 0.000 0.099 0.308
## 6 Betula_papyrifera -0.843 0.085 -0.849 -1.089 -0.042 0.011 -0.665
<- vs_electivity(moth_distrib$r, moth_distrib$p)
gypsy_moth_prefs
names(gypsy_moth_prefs) <- moth_distrib$binomen
sort(gypsy_moth_prefs, decreasing = TRUE)
## Populus_grandidentata Quercus_rubra Ostrya_virginiana
## 0.58107791 0.57940916 0.36470127
## Amelanchier_sp Acer_spicatum Juglans_cinerea
## 0.30891287 0.09590718 0.08485274
## Acer_saccharum Fagus_grandifolia Tilia_americana
## 0.07507596 -0.11166165 -0.17621830
## Pinus_strobus Carya_cordiformis Ulmus_rubra
## -0.32062903 -0.37337994 -0.50262587
## Prunus_pensylvanica Betula_papyrifera Fraxinus_americana
## -0.58618841 -0.66529208 -0.73713206
## Betula_lutea Acer_rubrum Acer_pensylvanicum
## -0.73883938 -0.73955078 -0.78682859
## Prunus_serotina
## -0.93239165
library(tidyr)
library(dplyr)
library(purrr)
# Example data
<- tibble::tribble(
df ~snail, ~site, ~food, ~pieces_eaten, ~pieces_present,
"Bert", "outside", "Carrot", 3, 7,
"Bert", "outside", "Broccoli", 3, 8,
"Bert", "outside", "Kale", 1, 1,
"Bert", "inside", "Carrot", 5, 11,
"Bert", "inside", "Broccoli", 7, 3,
"Bert", "inside", "Kale", 2, 4,
"Ernie", "outside", "Carrot", 6, 7,
"Ernie", "outside", "Broccoli", 4, 8,
"Ernie", "outside", "Kale", 1, 1,
"Ernie", "inside", "Carrot", 3, 11,
"Ernie", "inside", "Broccoli", 1, 3,
"Ernie", "inside", "Kale", 4, 4
)
<-
prefs %>%
df # Nest the data for each snail x site pair
nest(-snail, -site) %>%
# Apply vs_electivity() (or any other function) to each nested dataframe
mutate(score = map(data, ~ vs_electivity(.$pieces_eaten, .$pieces_present))) %>%
# Expand the result (score) into new rows
unnest(score, data) %>%
# Omit unwanted columns
select(-pieces_eaten, -pieces_present) %>%
# Turn the sites into columns that show electivity for each snail x food pair.
spread(key = site, value = score)
::kable(prefs, format = "markdown") knitr
snail | food | inside | outside |
---|---|---|---|
Bert | Broccoli | 0.3608247 | -0.2317073 |
Bert | Carrot | -0.4136808 | -0.1676301 |
Bert | Kale | -0.3734177 | 0.2490706 |
Ernie | Broccoli | -0.2325581 | -0.2222222 |
Ernie | Carrot | -0.3250000 | 0.0434783 |
Ernie | Kale | 0.3026316 | 0.1200000 |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.