The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Date repository last updated: November 06, 2024
Overview
The envi
package is a suite of R
functions
to estimate the ecological niche of a species and predict the spatial
distribution of the ecological niche – a version of environmental
interpolation – with spatial kernel density estimation techniques. A
two-group comparison (e.g., presence and absence locations of a single
species) is conducted using the spatial relative risk function that is
estimated using the sparr package.
Internal cross-validation and basic visualization are also
supported.
Installation
To install the release version from CRAN:
install.packages('envi')
To install the development version from GitHub:
devtools::install_github('lance-waller-lab/envi')
Available functions
Function | Description |
lrren
|
Main function. Estimate an ecological niche using the spatial relative risk function and predict its location in geographic space. |
perlrren
|
Sensitivity analysis for lrren
whereby observation locations are spatially perturbed (‘jittered’) with
specified radii, iteratively.
|
plot_obs
|
Display multiple plots of the estimated ecological niche from
lrren output.
|
plot_predict
|
Display multiple plots of the predicted spatial distribution from
lrren output.
|
plot_cv
|
Display multiple plots of internal k-fold cross-validation diagnostics
from lrren output.
|
plot_perturb
|
Display multiple plots of output from
perlrren including predicted
spatial distribution of the summary statistics.
|
div_plot
|
Called within plot_obs ,
plot_predict , and
plot_perturb , provides
functionality for basic visualization of surfaces with diverging color
palettes.
|
seq_plot
|
Called within plot_perturb ,
provides functionality for basic visualization of surfaces with
sequential color palettes.
|
pval_correct
|
Called within lrren and
perlrren , calculates various
multiple testing corrections for the alpha level.
|
---|
Authors
See also the list of contributors who participated in this package, including:
set.seed(1234) # for reproducibility
# ------------------ #
# Necessary packages #
# ------------------ #
library(envi)
library(spatstat.data)
library(spatstat.random)
# -------------- #
# Prepare inputs #
# -------------- #
# Using the 'bei' and 'bei.extra' data within {spatstat.data}
# Environmental Covariates
<- bei.extra[[1]]
elev <- bei.extra[[2]]
grad $v <- scale(elev)
elev$v <- scale(grad)
grad<- rast(elev)
elev_raster <- rast(grad)
grad_raster
# Presence data
<- bei
presence marks(presence) <- data.frame(
'presence' = rep(1, presence$n),
'lon' = presence$x,
'lat' = presence$y
)marks(presence)$elev <- elev[presence]
marks(presence)$grad <- grad[presence]
# (Pseudo-)Absence data
<- rpoispp(0.008, win = elev)
absence marks(absence) <- data.frame(
'presence' = rep(0, absence$n),
'lon' = absence$x,
'lat' = absence$y
)marks(absence)$elev <- elev[absence]
marks(absence)$grad <- grad[absence]
# Combine
<- superimpose(presence, absence, check = FALSE)
obs_locs <- marks(obs_locs)
obs_locs $id <- seq(1, nrow(obs_locs), 1)
obs_locs<- obs_locs[ , c(6, 2, 3, 1, 4, 5)]
obs_locs
# Prediction Data
<- crds(elev_raster)
predict_xy <- as.data.frame(predict_xy)
predict_locs $elev <- extract(elev_raster, predict_xy)[ , 1]
predict_locs$grad <- extract(grad_raster, predict_xy)[ , 1]
predict_locs
# ----------- #
# Run lrren() #
# ----------- #
<- lrren(
test1 obs_locs = obs_locs,
predict_locs = predict_locs,
predict = TRUE,
verbose = TRUE,
cv = TRUE
)
# -------------- #
# Run plot_obs() #
# -------------- #
plot_obs(test1)
# ------------------ #
# Run plot_predict() #
# ------------------ #
plot_predict(
test1,cref0 = 'EPSG:5472',
cref1 = 'EPSG:4326'
)
# ------------- #
# Run plot_cv() #
# ------------- #
plot_cv(test1)
# -------------------------------------- #
# Run lrren() with Bonferroni correction #
# -------------------------------------- #
<- lrren(
test2 obs_locs = obs_locs,
predict_locs = predict_locs,
predict = TRUE,
p_correct = 'Bonferroni'
)
# Note: Only showing third plot
plot_obs(test2)
# Note: Only showing second plot
plot_predict(
test2,cref0 = 'EPSG:5472',
cref1 = 'EPSG:4326'
)
# Note: plot_cv() will display the same results because cross-validation only performed for the log relative risk estimate
set.seed(1234) # for reproducibility
# ------------------ #
# Necessary packages #
# ------------------ #
library(envi)
library(spatstat.data)
library(spatstat.random)
# -------------- #
# Prepare inputs #
# -------------- #
# Using the 'bei' and 'bei.extra' data within {spatstat.data}
# Scale environmental covariates
<- bei.extra
ims 1]]$v <- scale(ims[[1]]$v)
ims[[2]]$v <- scale(ims[[2]]$v)
ims[[
# Presence data
<- bei
presence marks(presence) <- data.frame(
'presence' = rep(1, presence$n),
'lon' = presence$x,
'lat' = presence$y
)
# (Pseudo-)Absence data
<- rpoispp(0.008, win = ims[[1]])
absence marks(absence) <- data.frame(
'presence' = rep(0, absence$n),
'lon' = absence$x,
'lat' = absence$y
)
# Combine and create 'id' and 'levels' features
<- superimpose(presence, absence, check = FALSE)
obs_locs marks(obs_locs)$id <- seq(1, obs_locs$n, 1)
marks(obs_locs)$levels <- as.factor(rpois(obs_locs$n, lambda = 0.05))
marks(obs_locs) <- marks(obs_locs)[ , c(4, 2, 3, 1, 5)]
# -------------- #
# Run perlrren() #
# -------------- #
# Uncertainty in observation locations
## Most observations within 10 meters
## Some observations within 100 meters
## Few observations within 500 meters
<- perlrren(
test3 obs_ppp = obs_locs,
covariates = ims,
radii = c(10, 100, 500),
verbose = FALSE, # may not be availabe if parallel = TRUE
parallel = TRUE,
n_sim = 100
)
# ------------------ #
# Run plot_perturb() #
# ------------------ #
plot_perturb(
test3,cref0 = 'EPSG:5472',
cref1 = 'EPSG:4326',
cov_labs = c('elev', 'grad')
)
This package was developed while the author was originally a doctoral student in the Environmental Health Sciences doctoral program at Emory University and later as a postdoctoral fellow supported by the Cancer Prevention Fellowship Program at the National Cancer Institute. Any modifications since December 05, 2022 were made while the author was an employee of DLH, LLC (formerly Social & Scientific Systems, Inc.).
When citing this package for publication, please follow:
citation('envi')
For questions about the package, please contact the maintainer Dr. Ian D. Buller or submit a new issue.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.