The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Project Status: Active – The project has reached a stable, usable state and is being actively developed. Signed by Signed commit % Linux build Status Coverage Status cran checks CRAN status Minimal R Version License

epidata

Tools to Retrieve Economic Policy Institute Data Library Extracts

Description

The Economic Policy Institute (https://www.epi.org/) provides researchers, media, and the public with easily accessible, up-to-date, and comprehensive historical data on the American labor force. It is compiled from Economic Policy Institute analysis of government data sources. Use it to research wages, inequality, and other economic indicators over time and among demographic groups. Data is usually updated monthly.

What’s Inside The Tin

The following functions are implemented:

Installation

install.packages("epidata") # NOTE: CRAN version is 0.3.0
# or
install.packages("epidata", repos = c("https://cinc.rud.is", "https://cloud.r-project.org/"))
# or
remotes::install_git("https://git.rud.is/hrbrmstr/epidata.git")
# or
remotes::install_git("https://git.sr.ht/~hrbrmstr/epidata")
# or
remotes::install_gitlab("hrbrmstr/epidata")
# or
remotes::install_github("hrbrmstr/epidata")

NOTE: To use the ‘remotes’ install options you will need to have the {remotes} package installed.

Usage

library(epidata)

# current version
packageVersion("epidata")
## [1] '0.4.0'

NOTE: You can use options(epidata.show.citation = FALSE) to disable the messages that show citation requirements and notes about the datasets. Please remember that EPI requires attribution and that the notes convey very important information about the datasets.

get_black_white_wage_gap()
## # A tibble: 47 x 8
##     date white_median white_average black_median black_average gap_median gap_average gap_regression_based
##    <dbl>        <dbl>         <dbl>        <dbl>         <dbl>      <dbl>       <dbl>                <dbl>
##  1  1973         17.9          20.7         14.0          16.3      0.223       0.215              NA     
##  2  1974         17.5          20.3         14.0          16.0      0.198       0.209              NA     
##  3  1975         17.4          20.4         14.1          16.1      0.191       0.208              NA     
##  4  1976         17.5          20.5         14.2          16.8      0.19        0.182              NA     
##  5  1977         17.5          20.4         14.2          16.5      0.188       0.19               NA     
##  6  1978         17.7          20.5         14.2          16.7      0.201       0.186              NA     
##  7  1979         17.4          20.7         14.6          17.1      0.164       0.173               0.086 
##  8  1980         17.4          20.3         14.4          16.7      0.173       0.174               0.086 
##  9  1981         17.0          20.2         14.0          16.6      0.175       0.174               0.0820
## 10  1982         17.2          20.4         13.9          16.5      0.194       0.191               0.099 
## # … with 37 more rows

get_underemployment()
## # A tibble: 367 x 2
##    date         all
##    <date>     <dbl>
##  1 1989-12-01 0.094
##  2 1990-01-01 0.093
##  3 1990-02-01 0.094
##  4 1990-03-01 0.094
##  5 1990-04-01 0.094
##  6 1990-05-01 0.094
##  7 1990-06-01 0.094
##  8 1990-07-01 0.094
##  9 1990-08-01 0.095
## 10 1990-09-01 0.096
## # … with 357 more rows

get_median_and_mean_wages("gr")
## # A tibble: 47 x 25
##     date median average men_median men_average women_median women_average white_median white_average black_median
##    <dbl>  <dbl>   <dbl>      <dbl>       <dbl>        <dbl>         <dbl>        <dbl>         <dbl>        <dbl>
##  1  1973   17.3    20.1       21.0        23.6         13.2          15.1         17.9          20.7         14.0
##  2  1974   16.9    19.7       20.7        23.1         13            14.9         17.5          20.3         14.0
##  3  1975   16.9    19.8       21.0        23.1         13.2          15.1         17.4          20.4         14.1
##  4  1976   16.9    20.0       20.7        23.4         13.3          15.4         17.5          20.5         14.2
##  5  1977   16.9    19.9       20.9        23.4         13.2          15.2         17.5          20.4         14.2
##  6  1978   17.1    19.9       21.2        23.5         13.2          15.3         17.7          20.5         14.2
##  7  1979   16.8    20.1       21.1        23.7         13.4          15.5         17.4          20.7         14.6
##  8  1980   16.7    19.7       20.9        23.2         13.3          15.3         17.4          20.3         14.4
##  9  1981   16.5    19.6       20.4        23.0         13.4          15.3         17.0          20.2         14.0
## 10  1982   16.4    19.8       20.4        23.2         13.2          15.6         17.2          20.4         13.9
## # … with 37 more rows, and 15 more variables: black_average <dbl>, hispanic_median <dbl>, hispanic_average <dbl>,
## #   white_men_median <dbl>, white_men_average <dbl>, black_men_median <dbl>, black_men_average <dbl>,
## #   hispanic_men_median <dbl>, hispanic_men_average <dbl>, white_women_median <dbl>, white_women_average <dbl>,
## #   black_women_median <dbl>, black_women_average <dbl>, hispanic_women_median <dbl>, hispanic_women_average <dbl>

Extended Example

library(tidyverse)
library(epidata)
library(ggrepel)
library(hrbrthemes)

unemployment <- get_unemployment()
wages <- get_median_and_mean_wages()

glimpse(wages)
## Rows: 47
## Columns: 3
## $ date    <dbl> 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989,…
## $ median  <dbl> 17.27, 16.93, 16.94, 16.90, 16.92, 17.07, 16.79, 16.68, 16.50, 16.43, 16.47, 16.55, 16.81, 16.92, 17.…
## $ average <dbl> 20.09, 19.72, 19.77, 19.99, 19.88, 19.92, 20.10, 19.70, 19.59, 19.76, 19.80, 19.87, 20.08, 20.57, 20.…

glimpse(unemployment)
## Rows: 510
## Columns: 2
## $ date <date> 1978-01-01, 1978-02-01, 1978-03-01, 1978-04-01, 1978-05-01, 1978-06-01, 1978-07-01, 1978-08-01, 1978-09…
## $ all  <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.061, 0.061, 0.060, 0.060, 0.059, 0.059, 0.059, 0.058, 0.05…

unemployment %>% 
  group_by(date = as.integer(lubridate::year(date))) %>%
  summarise(rate = mean(all)) %>%
  left_join(select(wages, date, median), by = "date") %>%
  filter(!is.na(median)) %>%
  arrange(date) -> xdf

cols <- ggthemes::tableau_color_pal()(3)

update_geom_font_defaults(font_rc)

ggplot(xdf, aes(rate, median)) +
  geom_path(
     color = cols[1], 
     arrow = arrow(
       type = "closed", 
       length = unit(10, "points")
    )
  ) +
  geom_point() +
  geom_label_repel(
    aes(label = date),
    alpha = c(1, rep((4/5), (nrow(xdf)-2)), 1),
    size = c(5, rep(3, (nrow(xdf)-2)), 5),
    color = c(cols[2], rep("#2b2b2b", (nrow(xdf)-2)), cols[3]),
    family = font_rc
  ) +
  scale_x_continuous(
    name = "Unemployment Rate", 
    expand = c(0,0.001), label = scales::percent
  ) +
  scale_y_continuous(
    name = "Median Wage", 
    expand = c(0,0.25), 
    label = scales::dollar
  ) +
  labs(
    title = "U.S. Unemployment Rate vs Median Wage Since 1978",
    subtitle = "Wage data is in 2015 USD",
    caption = "Source: EPI analysis of Current Population Survey Outgoing Rotation Group microdata"
  ) +
  theme_ipsum_rc(grid="XY")

epidata Metrics

Lang # Files (%) LoC (%) Blank lines (%) # Lines (%)
R 18 0.47 476 0.45 201 0.44 490 0.47
Rmd 1 0.03 58 0.05 28 0.06 33 0.03
SUM 19 0.50 534 0.50 229 0.50 523 0.50

clock Package Metrics for epidata

Code of Conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.