The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Welcome to the comprehensive guide for evanverse - a feature-rich R utility package providing 55+ functions for data analysis, visualization, and bioinformatics workflows.
The evanverse package provides robust package management utilities:
# Check if packages are installed
required_packages <- c("dplyr", "ggplot2", "tidyr")
check_pkg(required_packages)
#> # A tibble: 3 × 4
#> package name installed source
#> <chr> <chr> <lgl> <chr>
#> 1 dplyr dplyr TRUE CRAN
#> 2 ggplot2 ggplot2 TRUE CRAN
#> 3 tidyr tidyr TRUE CRAN
# Get package version (skip on CRAN due to network dependency)
if (!identical(Sys.getenv("NOT_CRAN"), "false")) {
try(pkg_version("evanverse"), silent = TRUE)
}
#> package version latest source
#> 1 evanverse 0.3.7 <NA> Not Found
# List all available palettes
palettes_info <- list_palettes()
print(palettes_info)
#> name type n_color
#> 6 contrast_duo diverging 2
#> 8 fire_ice_duo diverging 2
#> 11 polar_duo diverging 2
#> 12 sunset_sky diverging 2
#> 10 piyg diverging 3
#> 7 earthy_diverge diverging 5
#> 9 gradient_rd_bu diverging 11
#> 14 earthy_triad qualitative 3
#> 26 primary_triad qualitative 3
#> 31 softtrio qualitative 3
#> 33 vintage_triad qualitative 3
#> 13 balanced_quartet qualitative 4
#> 32 vibrant qualitative 5
#> 34 violin qualitative 5
#> 24 harmonysix qualitative 6
#> 25 pastel_harmony qualitative 6
#> 18 ggsci_jama qualitative 7
#> 23 ggsci_tron_legacy qualitative 7
#> 21 ggsci_nejm qualitative 8
#> 28 rcb_set2 qualitative 8
#> 20 ggsci_lancet qualitative 9
#> 27 rcb_set1 qualitative 9
#> 35 vividset qualitative 9
#> 15 ggsci_cosmic qualitative 10
#> 16 ggsci_flatui qualitative 10
#> 19 ggsci_jco qualitative 10
#> 22 ggsci_npg qualitative 10
#> 17 ggsci_futurama qualitative 12
#> 29 rcb_set3 qualitative 12
#> 30 sc_pbmc qualitative 17
#> 1 blues sequential 3
#> 2 forest_fade sequential 4
#> 4 muted_gradient sequential 4
#> 5 warm_blush sequential 4
#> 3 ggsci_locuszoom sequential 7
#> colors
#> 6 #C64328, #56BBA5
#> 8 #2AA6C6, #C64328
#> 11 #8CB5D2, #E18E8F
#> 12 #57A2FF, #FF8000
#> 10 #E64B35B2, #00A087B2, #3C5488B2
#> 7 #283618, #606C38, #FEFAE0, #DDA15E, #BC6C25
#> 9 #67001f, #b2182b, #d6604d, #f4a582, #fddbc7, #f7f7f7, #d1e5f0, #92c5de, #4393c3, #2166ac, #053061
#> 14 #C64328, #56BBA5, #E3A727
#> 26 #C64328, #2AA6C6, #E3A727
#> 31 #E64B35B2, #00A087B2, #3C5488B2
#> 33 #96A0D9, #D9BDAD, #D9D5A0
#> 13 #5D83B4, #9FD0E8, #CDAE9D, #959683
#> 32 #BF3F9D, #B3BCD7, #6DA6A0, #D98A29, #F2C894
#> 34 #37848C, #F2935C, #F2A88D, #D95555, #A7CAE9
#> 24 #BF3641, #836AA6, #377BA6, #448C42, #D96236, #B79290
#> 25 #B2AA76, #8C91CF, #D7D79C, #DABFAC, #BCEDDB, #C380A0
#> 18 #374E55, #DF8F44, #00A1D5, #B24745, #79AF97, #6A6599, #80796B
#> 23 #FF410D, #6EE2FF, #F7C530, #95CC5E, #D0DFE6, #F79D1E, #748AA6
#> 21 #BC3C29, #0072B5, #E18727, #20854E, #7876B1, #6F99AD, #FFDC91, #EE4C97
#> 28 #66C2A5, #FC8D62, #8DA0CB, #E78AC3, #A6D854, #FFD92F, #E5C494, #B3B3B3
#> 20 #00468B, #ED0000, #42B540, #0099B4, #925E9F, #FDAF91, #AD002A, #ADB6B6, #1B1919
#> 27 #E41A1C, #377EB8, #4DAF4A, #984EA3, #FF7F00, #FFFF33, #A65628, #F781BF, #999999
#> 35 #E64B35, #4DBBD5, #00A087, #3C5488, #F39B7F, #8491B4, #91D1C2, #DC0000, #7E6148
#> 15 #2E2A2B, #CF4E9C, #8C57A2, #358DB9, #82581F, #2F509E, #E5614C, #97A1A7, #3DA873, #DC9445
#> 16 #c0392b, #d35400, #f39c12, #27ae60, #16a085, #2980b9, #8e44ad, #2c3e50, #7f8c8d, #bdc3c7
#> 19 #0073C2, #EFC000, #868686, #CD534C, #7AA6DC, #003C67, #8F7700, #3B3B3B, #A73030, #4A6990
#> 22 #E64B35, #4DBBD5, #00A087, #3C5488, #F39B7F, #8491B4, #91D1C2, #DC0000, #7E6148, #B09C85
#> 17 #FF6F00, #C71000, #008EA0, #8A4198, #5A9599, #FF6348, #84D7E1, #FF95A8, #3D3B25, #ADE2D0, #1A5354, #3F4041
#> 29 #8DD3C7, #FFFFB3, #BEBADA, #FB8072, #80B1D3, #FDB462, #B3DE69, #FCCDE5, #D9D9D9, #BC80BD, #CCEBC5, #FFED6F
#> 30 #a2d2e7, #67a8cd, #ffc17f, #cf9f88, #6fb3a8, #b3e19b, #50aa4b, #ff9d9f, #f36569, #3581b7, #cdb6da, #704ba3, #9a7fbd, #dba9a8, #e40300, #e99b78, #ff8831
#> 1 #deebf7, #9ecae1, #3182bd
#> 2 #B2C9AD, #91AC8F, #66785F, #4B5945
#> 4 #E2E0C8, #A7B49E, #818C78, #5C7285
#> 5 #FFCDB2, #FFB4A2, #E5989B, #B5828C
#> 3 #D43F3A, #EEA236, #5CB85C, #46B8DA, #357EBD, #9632B8, #B8B8B8
# Get specific palettes
vivid_colors <- get_palette("vividset", type = "qualitative")
blues_gradient <- get_palette("blues", type = "sequential")
cat("Vivid qualitative palette:\n")
#> Vivid qualitative palette:
print(vivid_colors)
#> [1] "#E64B35" "#4DBBD5" "#00A087" "#3C5488" "#F39B7F" "#8491B4" "#91D1C2"
#> [8] "#DC0000" "#7E6148"
cat("\nBlues sequential palette:\n")
#>
#> Blues sequential palette:
print(blues_gradient)
#> [1] "#deebf7" "#9ecae1" "#3182bd"
# Create a custom palette (demonstration only - not executed to avoid file creation)
custom_colors <- c("#FF6B6B", "#4ECDC4", "#45B7D1", "#96CEB4")
# Example of how to create a custom palette (using temp directory):
# create_palette(
# name = "custom_demo",
# colors = custom_colors,
# type = "qualitative",
# color_dir = tempdir() # Use temporary directory to avoid cluttering package
# )
# Preview the custom colors
print("Custom palette colors:")
#> [1] "Custom palette colors:"
print(custom_colors)
#> [1] "#FF6B6B" "#4ECDC4" "#45B7D1" "#96CEB4"
cat("This would create a palette named 'custom_demo' with", length(custom_colors), "colors\n")
#> This would create a palette named 'custom_demo' with 4 colors
# Create sample data for Venn diagram
set1 <- c("A", "B", "C", "D", "E")
set2 <- c("C", "D", "E", "F", "G")
set3 <- c("E", "F", "G", "H", "I")
# Create Venn diagram
venn_plot <- plot_venn(
set1 = set1,
set2 = set2,
set3 = set3,
category.names = c("Set1", "Set2", "Set3"),
title = "Three-way Venn Diagram Example"
)
Venn diagram example
Venn diagram example
# Sample data
sample_data <- data.frame(
Category = c("Type A", "Type B", "Type C"),
Count = c(25, 18, 12),
Group = c("High", "High", "Medium")
)
# Create bar plot with custom colors
vivid_colors <- get_palette("vividset", type = "qualitative")
bar_plot <- plot_bar(data = sample_data,
x = "Category",
y = "Count",
fill = "Group") +
ggplot2::scale_fill_manual(values = vivid_colors) +
ggplot2::labs(title = "Sample Distribution by Category",
x = "Sample Type",
y = "Count")
print(bar_plot)
Professional bar plot
# Create sample vector with void values
messy_vector <- c("A", "", "C", NA, "E")
print("Original vector:")
#> [1] "Original vector:"
print(messy_vector)
#> [1] "A" "" "C" NA "E"
# Check for void values
cat("\nAny void values:", any_void(messy_vector), "\n")
#>
#> Any void values: TRUE
# Replace void values
clean_vector <- replace_void(messy_vector, value = "MISSING")
print("After replacing voids:")
#> [1] "After replacing voids:"
print(clean_vector)
#> [1] "A" "MISSING" "C" "MISSING" "E"
# Convert data frame to grouped list by cylinder count
grouped_data <- df2list(
data = mtcars[1:10, ],
key_col = "cyl",
value_col = "mpg"
)
print("Cars grouped by cylinder, showing MPG values:")
#> [1] "Cars grouped by cylinder, showing MPG values:"
str(grouped_data)
#> List of 3
#> $ 4: num [1:3] 22.8 24.4 22.8
#> $ 6: num [1:5] 21 21 21.4 18.1 19.2
#> $ 8: num [1:2] 18.7 14.3
# Time execution of code
result <- with_timer(function() {
Sys.sleep(0.01) # Quick simulation
sum(1:1000)
}, name = "Sum calculation")
print(result)
#> function (...)
#> {
#> cli::cli_alert_info("{name} started at {format(Sys.time(), '%Y-%m-%d %H:%M:%S')}")
#> tictoc::tic()
#> result <- fn(...)
#> timing <- tictoc::toc(quiet = TRUE)
#> elapsed <- as.numeric(timing$toc - timing$tic, units = "secs")
#> cli::cli_alert_success("{name} completed in {sprintf('%.3f', elapsed)} seconds")
#> invisible(result)
#> }
#> <bytecode: 0x0000023686630858>
#> <environment: 0x0000023686631620>
The evanverse package provides a comprehensive toolkit for:
With 55+ functions across 8 major categories, evanverse streamlines your data analysis workflow while maintaining flexibility and reliability.
For more information, visit the evanverse website or the GitHub repository.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.