| Version: | 1.0 |
| Date: | 2025-10-20 |
| Title: | The Eigenvalues Entropy as a Classifier Evaluation Measure |
| Author: | Doulaye Dembele |
| Maintainer: | Doulaye Dembele <doulaye@igbmc.fr> |
| Depends: | R (≥ 4.0), |
| Description: | The confusion matrix (CM) is used to get a classifier's evaluation measure in order to select a method among many. A stochastic matrix and its transformation are computed from the CM. The eigenvalues of the transformed symmetric matrix are used to get an entropy which appears to be a good evaluation measure. Many other measures, commonly used, are provided for comparison purpose. |
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
| NeedsCompilation: | no |
| Packaged: | 2025-11-06 09:15:14 UTC; doulaye |
| Repository: | CRAN |
| Date/Publication: | 2025-11-11 09:50:13 UTC |
The Eigenvalues Entropy as a Classifier Evaluation Measure
Description
eve allows to compute the eigenvalues entropy and many other commonly used classifier evaluation measures. For comparison purpose, all measures computed are adjusted to vary in [0,1].
Details
| Package: | eve |
| Type: | Package |
| Version: | 0.1-0 |
| Date: | 2025-10-20 |
| License: | GPL (>=2.0) |
This package has the following functions:
| eve(): | The function allowing to compute the eigenvalues entropy measure. |
| eve.mmatt(): | This function allows to compute a modified confusion matrix |
| which is useful for imbalanced problem. | |
| eve.bounds(): | This function allows to compute lower and upper bound values for the eigenvalues |
| used to get the EVE evaluation measure. | |
| eve.eigens(): | This function gives access to the eigenvalues used to get the EVE evaluation measure. |
| eve.bival(): | This function allows to compute the sensitivity, the specificity, the precision, the |
| Fowlkes and Mallows index, the F1-score and the area under the ROC curve, for a binary problem. | |
| eve.acc(): | The function computes the accuracy. |
| eve.nmi(): | This function computes the normalized mutual information value. |
| eve.mcc(): | This function computes the Matthews correlation coefficient, a shifted value is returned. |
| eve.kappa(): | This function computes the Cohen's Kappa measure value. |
| eve.cen(): | This function computes the confusion entropy of the misclassification. |
| A shifted value is returned. | |
| eve.mcen(): | This function compute the modified confusion entropy of the misclassification. |
| A shifted value is returned. | |
| m2two(): | This function converts a multiclass confusion matrix into a binary confusion matrix. |
| m2two.k(): | This function allows to get a confusion matrix of the comparison of one class |
| (k) versus the others. |
Author(s)
Doulaye Dembele Maintainer: Doulaye Dembele <doulaye@igbmc.fr>
References
Dembele D. (2025), The Eigenvalues Entropy as a Classifier Evaluation Measure. arXiv:2511.01904
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,43),ncol=3)
eve(mmat)
eve.acc(mmat)
eve.kappa(mmat)
eve.mcc(mmat)
eve.nmi(mmat)
eve.cen(mmat)
eve.mcen(mmat)
eve.mmatt(mmat)
res <- m2two(mmat)
eve.bival(res)
eve.kappa(res)
eve(res)
res <- m2two.k(mmat,2)
eve.bival(res)
eve.mcc(res)
eve.acc(res)
mmat <- matrix(c(9,1,80,210),ncol=2)
eve.bival(mmat)
eve.bival(eve.mmatt(mmat))
eve(mmat)
eve(eve.mmatt(mmat))
Eigenvalue entropy calculation
Description
This function computes the eigenvalues entropy for a binary or a multiclass confusion matrix.
Usage
eve(mmat)
Arguments
mmat |
a square numerical-valued confusion matrix. |
Value
This function returns the eigenvalue entropy, a numerical value for evaluating a classifier.
Author(s)
Doulaye Dembele
References
Dembele D. (2025), The Eigenvalues Entropy as a Classifier Evaluation Measure. arXiv:2511.01904
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
eve(mmat)
Accuracy calculation
Description
This function computes the accuracy for a binary or amulticlass confusion matrix.
Usage
eve.acc(mmat)
Arguments
mmat |
a square numerical-valued confusion matrix. |
Value
This function returns a numerical value, the accuracy associated with the confusion matrix.
Author(s)
Doulaye Dembele
References
E.B. Fowlkes and C.L. Mallows. A method for
Comparing Two Hierarchical Clusterings.
J Am Stat Assoc, 1983, v78, n383, pp553-569
A.K. Jain and R. Dubes. Algorithms for Clustering Data.
Prentice Hall, Englewood, New Jersey, 1988.
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
eve.acc(mmat)
Some binary measures calculation
Description
This function computes the sensitivity, the specificity, the precision, the Fowlkes & Mallows index, the F1-score and the area under the ROC curve for a binary problem confusion matrix.
Usage
eve.bival(mmat)
Arguments
mmat |
a 2 x 2 numerical-valued confusion matrix. |
Value
This function returns the sensitivity, the specificity, the precision, the Fowlkes & Mallows index, the F1-score and the area under the ROC curve measure values.
Author(s)
Doulaye Dembele
References
H. Cramer. Mathematical Methods of Statistics.
Princeton Univ Press, 1946.
E.B. Fowlkes and C.L. Mallows. A method for
Comparing Two Hierarchical Clusterings.
J Am Stat Assoc, 1983, v78, n383, pp553-569
A.K. Jain and R. Dubes. Algorithms for Clustering Data.
Prentice Hall, Englewood, New Jersey, 1988.
J. Furnkranz and P.A. Flach. ROC'n' Rule Learning - Towards a
Better Understanding of Covering Algorithms.
Mach Learn, 2005, v58, pp39-77.
D.J. Hand. Measuring Classifier Performance: a Coherent
Alternative to the Area Under the ROC Curve.
Mach Learn, 2009, v77, pp367-374.
D.M.W. Powers. Evaluation from Precision, Recall and F-measure
to ROC, Informmedness, Markedness and Correlation.
arXiv, 2020, 2010.16061.
Examples
mmat <- matrix(c(434,10,7,232), ncol=2)
eve.bival(mmat)
Eigenvalues bounds calculation
Description
This function computes a lower and an upper bound values for the eigenvalues associated with a confusion matrix transformation.
Usage
eve.bounds(mmat)
Arguments
mmat |
a square numerical-valued confusion matrix. |
Value
This function returns a vector which entries are a lower and an upper bound for the eigenvalues associated with a confusion matrix transformation. The range of these bounds is small (<2) for a good classifier.
Author(s)
Doulaye Dembele
References
Dembele D. (2025), The Eigenvalues Entropy as a Classifier Evaluation Measure. arXiv:2511.01904
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
eve.bounds(mmat)
Confusion entropy calculation
Description
This function computes the confusion entropy for a binary or a multiclass confusion matrix. A shifted value is returned
Usage
eve.cen(mmat)
Arguments
mmat |
a square numerical-valued confusion matrix. |
Value
This function returns a numerical value, a shifted confusion entropy (1-CEN).
Author(s)
Doulaye Dembele
References
J.M. Wei, X.J. Yuan, Q.H. Hu and S.Q. Wang.
A Novel Measure for Evaluating Classifiers.
Expert Syst Appl, 2010, v15 pp4969-4992.
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
eve.cen(mmat)
Eigenvalues used in the EVE measure
Description
This function give access to the eigenvalues associated with a confusion matrix transformation.
Usage
eve.eigens(mmat)
Arguments
mmat |
a square numerical-valued confusion matrix. |
Value
This function returns the eigenvalues of the confusion matrix transformation. These eigenvalues are used to obtain the EVE evaluation measure. For a binary problem, they can be used to obtain the AUC or the Gini index (coefficient).
Author(s)
Doulaye Dembele
References
Dembele D. (2025), The Eigenvalues Entropy as a Classifier Evaluation Measure. arXiv:2511.01904
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
eve.eigens(mmat)
Cohen's Kappa calculation
Description
This function computes the Cohen's kappa measure for a binary or a multiclass confusion matrix.
Usage
eve.kappa(mmat)
Arguments
mmat |
a square numerical-valued confusion matrix. |
Value
This function returns a numerical value, the Cohen kappa evaluation measure.
Author(s)
Doulaye Dembele
References
J. Cohen. A Coefficient of Agreement for Nominal
Scales.
Educ Psychol Meas, 1960, v20 n1 pp37-46
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
eve.kappa(mmat)
Matthews' correlation coefficient calculation
Description
This function computes the Matthews' correlation cooefficient for a binary of a multiclass confusion matrix.
Usage
eve.mcc(mmat)
Arguments
mmat |
a square numerical-valued confusion matrix. |
Value
This function returns a numerical value, a shifted Matthews correlation coefficient which varies in [0,1].
Author(s)
Doulaye Dembele
References
B.W. Matthews. Comparison of the Predicted and
observed Secondary Structures of T4 Phage Lysozome.
Biochem Biophys Acta, 1975, v405 pp442-451.
J. Gorodkin. Comparing Two K-Category Assignments by a
K-Category Correlation Coefficient.
Comput Biol Chem, 2004, v28 pp367-374.
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
eve.mcc(mmat)
Modified confusion entropy calculation
Description
This function computes the modified confusion entropy for a binary or a multiclass confusion matrix. A shifted value is returned
Usage
eve.mcen(mmat)
Arguments
mmat |
a square numerical-valued confusion matrix. |
Value
This function returns a numerical value, a shifted modified confusion entropy (1-MCEN).
Author(s)
Doulaye Dembele
References
R. Delgado and J.D. Nunez-Gonzalez. Enhancing Confusion
Entropy CEN for Binary and Multiclass Classification.
PLoS One, 2019, v14, n1, e0210264.
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
eve.mcen(mmat)
Modified confusion matrix calculation
Description
This function computes a modified confusion matrix for a binary or a multiclass problem.
Usage
eve.mmatt(mmat)
Arguments
mmat |
a square numerical-valued confusion matrix. |
Value
This function returns a modified confusion matrix which can be used to improve a measure sensitive to imbalanced ratio.
Author(s)
Doulaye Dembele
References
Dembele D. (2025), The Eigenvalues Entropy as a Classifier Evaluation Measure. arXiv:2511.01904
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
eve.mmatt(mmat)
Normalized mutual information calculation
Description
This function computes the normalized mutual information for a binary or a multiclass confusion matrix.
Usage
eve.nmi(mmat)
Arguments
mmat |
a square numerical-valued confusion matrix. |
Value
This function returns a numerical value, the normalized mutual information.
Author(s)
Doulaye Dembele
References
T.M. Cover and J.A. Thomas. Elements of Information
Theory.
Wiley, 2006, 2nd edition, Hoboken, New Jersey.
I. Kononenko and I Bratko. Information-Based Evaluation Criterion
of Classifiers Performance.
Mach Learn, 1991, v6, pp67-80.
N.X. Vinh, J. Epps and J. Bailey. Information Theoretic Measures
for Clusterings Comparison: Variants, Properties, Normalization
and Correction for Chance.
J Mach Learn Res, 2010, v11 pp2837-2854.
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
eve.nmi(mmat)
Conversion of a multicass confusion matrixto a single binary confusion matrix
Description
This function converts a multiclass confusion into a single binary confusion matrix.
Usage
m2two(mmat)
Arguments
mmat |
a square numerical-valued confusion matrix. |
Value
This function returns a 2 x 2 confusion matrix which can be used for evaluating a classifier.
Author(s)
Doulaye Dembele
References
A.K. Jain and R. Dubes. Algorithms for Clustering Data.
Prentice Hall, Englewood, New Jersey, 1988.
N.X. Vinh, J. Epps and J. Bailey. Information Theoretic Measures
for Clusterings Comparison: Variants, Properties, Normalization
and Correction for Chance.
J Mach Learn Res, 2010, v11 pp2837-2854.
Dembele D. (2025), The Eigenvalues Entropy as a Classifier Evaluation Measure. arXiv:2511.01904
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
m2two(mmat)
Comparison of the class k versus the rest
Description
This function allows to compare the class k versus the others for a multiclass problem.
Usage
m2two.k(mmat,k=1)
Arguments
mmat |
a square numerical-valued confusion matrix. |
k |
the index of the class to compare to the others. |
Value
This function returns a 2 x 2 confusion matrix which can be used for evaluating a classifier. The class k is compared to the others.
Author(s)
Doulaye Dembele
References
H. Cramer. Mathematical Methods of Statistics.
Princeton Univ Press, 1946.
E.B. Fowlkes and C.L. Mallows. A method for
Comparing Two Hierarchical Clusterings.
J Am Stat Assoc, 1983, v78, n383, pp553-569
A.K. Jain and R. Dubes. Algorithms for Clustering Data.
Prentice Hall, Englewood, New Jersey, 1988.
Dembele D. (2025), The Eigenvalues Entropy as a Classifier Evaluation Measure. arXiv:2511.01904
Examples
mmat <- matrix(c(50,0,0,0,35,15,0,7,34), ncol=3)
m2two.k(mmat,2)