The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

documentation

library(eventstudyr)

Event Studies

Linear panel models, and the event-study plots that often accompany them, are popular tools for learning about policy effects.

eventstudyr

eventstudyr facilitates estimating linear panel event-study models and constructing event-study plots following the suggestions in Freyaldenhoven et al. (2021). In particular, it provides functionality for:

Data

We will use the example_data dataset to demonstrate the basic functionality of eventstudyr. These sample data are from the replication archive for Freyaldenhoven et al. (2021). The documentation can be accessed using ?example_data.


dim(example_data)
#> [1] 2000   12
head(example_data)
#> # A tibble: 6 × 12
#>      id eventtime     t     z y_base eta_m y_jump_m y_smooth_m x_jump_m eta_r
#>   <dbl>     <dbl> <dbl> <dbl>  <dbl> <dbl>    <dbl>      <dbl>    <dbl> <dbl>
#> 1     1        32     1     0 -0.609 0.180     41.6       41.6   0.684      1
#> 2     1        32     2     0 -0.870 0.180     41.3       41.3   0.0167     1
#> 3     1        32     3     0 -0.906 0.180     41.3       41.3   0.153      1
#> 4     1        32     4     0  0.148 0.180     42.3       42.3  -0.930      1
#> 5     1        32     5     0  0.579 0.180     42.8       42.8  -0.316      1
#> 6     1        32     6     0 -0.340 0.180     41.8       41.8   1.69       1
#> # ℹ 2 more variables: y_r <dbl>, x_r <dbl>

EventStudy()

EventStudy() estimates the regression model from Equation (2) in Freyaldenhoven et al. (2021) and returns a list object that stores the estimation results (as an lm() object) as well as the arguments given in the function call. It accepts variables specifying the outcome, policy, ID and time variables. One must also specify the number of periods in the past before which the past values of the policy are not supposed to affect the value of the outcome and the number of periods in the future after which the future values of the policy are not supposed to affect the value of the outcome today. The function optionally accepts variables specifying the controls, the time window, whether fixed effects should be included, and the period to be used for normalization.

Here is an example using the sample data:

results <- EventStudy(estimator = "OLS",
                      data = example_data,
                      outcomevar = "y_jump_m",
                      policyvar = "z",
                      idvar = "id",
                      timevar = "t",
                      post = 3,
                      pre = 0)
summary(results$output)
#> 
#> Call:
#> estimatr::lm_robust(formula = prepared_model_formula, data = prepared_data, 
#>     clusters = get(idvar), fixed_effects = ~get(idvar) + get(timevar), 
#>     se_type = "stata")
#> 
#> Standard error type:  stata 
#> 
#> Coefficients:
#>            Estimate Std. Error t value  Pr(>|t|) CI Lower CI Upper DF
#> z_lead3      0.2390     0.1433  1.6683 1.016e-01 -0.04891   0.5270 49
#> z_fd_lead3   0.1752     0.1618  1.0829 2.842e-01 -0.14997   0.5004 49
#> z_fd_lead2   0.1238     0.1748  0.7085 4.820e-01 -0.22744   0.4751 49
#> z_fd         0.8309     0.1332  6.2355 1.014e-07  0.56309   1.0986 49
#> z_fd_lag1    0.8552     0.1766  4.8419 1.328e-05  0.50024   1.2101 49
#> z_fd_lag2    0.6326     0.1538  4.1123 1.491e-04  0.32347   0.9417 49
#> z_fd_lag3    0.2464     0.1830  1.3465 1.843e-01 -0.12132   0.6140 49
#> z_lag4       0.1428     0.1270  1.1241 2.664e-01 -0.11244   0.3979 49
#> 
#> Multiple R-squared:  0.9997 ,    Adjusted R-squared:  0.9997
#> Multiple R-squared (proj. model):  0.05327 , Adjusted R-squared (proj. model):  -0.001353 
#> F-statistic (proj. model): 10.44 on 8 and 49 DF,  p-value: 2.142e-08
Click for results$arguments
  ## Estimator
  results$arguments$estimator
  #> [1] "OLS"
  
  ## Data
  results$arguments$data[1:5,]
  #>   id eventtime t z     y_base eta_m y_jump_m y_smooth_m    x_jump_m eta_r
  #> 1  1        32 1 0 -0.6087238  0.18 41.57128   41.57128  0.68367314     1
  #> 2  1        32 2 0 -0.8699341  0.18 41.31007   41.31007  0.01667022     1
  #> 3  1        32 3 0 -0.9059790  0.18 41.27402   41.27402  0.15259252     1
  #> 4  1        32 4 0  0.1482184  0.18 42.32822   42.32822 -0.93015540     1
  #> 5  1        32 5 0  0.5785761  0.18 42.75858   42.75858 -0.31635490     1
  #>        y_r       x_r z_fd z_fd_lag1 z_fd_lag2 z_fd_lag3 z_fd_lead3 z_fd_lead2
  #> 1 1.891276 0.5520976   NA        NA        NA        NA          0          0
  #> 2 1.630066 2.3021448    0        NA        NA        NA          0          0
  #> 3 1.594021 1.0289093    0         0        NA        NA          0          0
  #> 4 2.648218 0.2615794    0         0         0        NA          0          0
  #> 5 3.078576 1.2146608    0         0         0         0          0          0
  #>   z_fd_lead1 z_lag4 z_lead3
  #> 1          0     NA       1
  #> 2          0     NA       1
  #> 3          0     NA       1
  #> 4          0     NA       1
  #> 5          0      0       1
  
  ## Variables
  results$arguments$outcomevar
  #> [1] "y_jump_m"
  results$arguments$outcomevar
  #> [1] "y_jump_m"
  results$arguments$policyvar
  #> [1] "z"
  results$arguments$idvar
  #> [1] "id"
  results$arguments$timevar
  #> [1] "t"
  results$arguments$controls
  #> NULL
  
  ## Proxies
  results$arguments$proxy
  #> NULL
  results$arguments$proxyIV
  #> NULL
  
  ## Fixed effects
  results$arguments$FE
  #> [1] TRUE
  results$arguments$TFE
  #> [1] TRUE
  
  ## Periods
  results$arguments$post
  #> [1] 3
  results$arguments$overidpost
  #> [1] 1
  results$arguments$pre
  #> [1] 0
  results$arguments$overidpre
  #> [1] 3
  
  ## Normalization
  results$arguments$normalize
  #> [1] -1
  results$arguments$normalization_column
  #> [1] "z_fd_lead1"
  
  ## Cluster
  results$arguments$cluster
  #> [1] TRUE
  
  ## Eventstudy coefficients
  results$arguments$eventstudy_coefficients
  #> [1] "z_lead3"    "z_fd_lead3" "z_fd_lead2" "z_fd"       "z_fd_lag1" 
  #> [6] "z_fd_lag2"  "z_fd_lag3"  "z_lag4"

EventStudyPlot()

EventStudyPlot() prepares an event-study plot based on the suggestions in Freyaldenhoven et al. (2021).

This function is designed to use the output of the EventStudy() and returns a ggplot object. Here is an example of using the function with some default settings:

eventstudy_estimates_ols <- EventStudy(estimator = "OLS",
                                       data = example_data,
                                       outcomevar = "y_jump_m",
                                       policyvar = "z",
                                       idvar = "id",
                                       timevar = "t",
                                       post = 3,
                                       pre = 0)
 
EventStudyPlot(estimates = eventstudy_estimates_ols,
               xtitle = "Event time",
               ytitle = "Coefficient")

References

Freyaldenhoven, S., Hansen, C., Pérez, J.P. and Shapiro, J.M., 2021. Visualization, identification, and estimation in the linear panel event-study design (No. w29170). National Bureau of Economic Research.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.