The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

f1dataR

An R package to access Formula 1 Data from the Ergast API and the official F1 data stream via the FastF1 Python library.

R-CMD-check test-coverage Codecov test coverage Lifecycle: stable CRAN status CRAN downloads

Installation

Install the stable version from CRAN:

install.packages("f1dataR")

or install the development version from GitHub:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("SCasanova/f1dataR")
library(f1dataR)

Data Sources

Data is pulled from:

Note the Ergast Motor Racing Database API will be shutting down at the end of 2024. When a new data source is identified the package will be migrated to that source.

Functions

Load Lap Times

load_laps(season = "current", race = "last")

This function loads lap-by-lap time data for all drivers in a given season and round. Round refers to race number. The defaults are current season and last race. Lap data is limited to 1996-present.

Example:

load_laps()
#> # A tibble: 841 × 6
#>    driver_id      position time       lap time_sec season
#>    <chr>          <chr>    <chr>    <int>    <dbl>  <dbl>
#>  1 leclerc        1        1:51.912     1     112.   2024
#>  2 hamilton       2        1:52.700     1     113.   2024
#>  3 perez          3        1:53.439     1     113.   2024
#>  4 piastri        4        1:54.248     1     114.   2024
#>  5 russell        5        1:54.763     1     115.   2024
#>  6 sainz          6        1:55.270     1     115.   2024
#>  7 norris         7        1:55.727     1     116.   2024
#>  8 alonso         8        1:56.577     1     117.   2024
#>  9 max_verstappen 9        1:57.183     1     117.   2024
#> 10 albon          10       1:57.321     1     117.   2024
#> # ℹ 831 more rows

or

load_laps(season = 2021, round = 15)
#> # A tibble: 1,025 × 6
#>    driver_id position time       lap time_sec season
#>    <chr>     <chr>    <chr>    <int>    <dbl>  <dbl>
#>  1 sainz     1        1:42.997     1     103.   2021
#>  2 norris    2        1:44.272     1     104.   2021
#>  3 russell   3        1:46.318     1     106.   2021
#>  4 stroll    4        1:47.279     1     107.   2021
#>  5 ricciardo 5        1:48.221     1     108.   2021
#>  6 alonso    6        1:49.347     1     109.   2021
#>  7 hamilton  7        1:49.826     1     110.   2021
#>  8 perez     8        1:50.617     1     111.   2021
#>  9 ocon      9        1:51.098     1     111.   2021
#> 10 raikkonen 10       1:51.778     1     112.   2021
#> # ℹ 1,015 more rows

Driver Telemetry

load_driver_telemetry(season = "current", race = "last", session = "R", driver, laps = "all")

When the parameters for season (four digit year), round (number or GP name), session (FP1. FP2, FP3, Q, S, SS, or R), and driver code (three letter code) are entered, the function will load all data for a session and the pull the info for the selected driver. The first time a session is called, loading times will be relatively long but in subsequent calls this will improve to only a couple of seconds

load_driver_telemetry(season = 2022, round = 4, driver = "PER")
#> # A tibble: 592 × 19
#>    date                session_time  time   rpm speed n_gear throttle brake
#>    <dttm>                     <dbl> <dbl> <dbl> <dbl>  <dbl>    <dbl> <lgl>
#>  1 2022-04-24 14:19:27        8308. 0     11221   282      7      100 FALSE
#>  2 2022-04-24 14:19:27        8308. 0.021 11221   283      7      100 FALSE
#>  3 2022-04-24 14:19:28        8308. 0.278 11221   284      7      100 FALSE
#>  4 2022-04-24 14:19:28        8308. 0.401 11279   285      7      100 FALSE
#>  5 2022-04-24 14:19:28        8309. 0.678 11337   286      7      100 FALSE
#>  6 2022-04-24 14:19:28        8309. 0.681 11376   287      7      100 FALSE
#>  7 2022-04-24 14:19:28        8309. 0.86  11416   288      7      100 FALSE
#>  8 2022-04-24 14:19:29        8309. 1.08  11456   289      7      100 FALSE
#>  9 2022-04-24 14:19:29        8309. 1.18  11461   289      7      100 FALSE
#> 10 2022-04-24 14:19:29        8309. 1.24  11467   290      7      100 FALSE
#> # ℹ 582 more rows
#> # ℹ 11 more variables: drs <dbl>, source <chr>, relative_distance <dbl>,
#> #   status <chr>, x <dbl>, y <dbl>, z <dbl>, distance <dbl>,
#> #   driver_ahead <chr>, distance_to_driver_ahead <dbl>, …

load_driver_telemetry(season = 2018, round = 7, "Q", "HAM", laps = "fastest")
#> # A tibble: 534 × 19
#>    date                session_time  time   rpm speed n_gear throttle brake
#>    <dttm>                     <dbl> <dbl> <dbl> <dbl>  <dbl>    <dbl> <lgl>
#>  1 2018-06-09 18:59:18        3788. 0     10674   297      8      100 FALSE
#>  2 2018-06-09 18:59:18        3788. 0.016 10704   298      8      100 FALSE
#>  3 2018-06-09 18:59:18        3788. 0.043 10762   299      8      100 FALSE
#>  4 2018-06-09 18:59:19        3788. 0.256 10820   301      8      100 FALSE
#>  5 2018-06-09 18:59:19        3788. 0.343 10847   302      8      100 FALSE
#>  6 2018-06-09 18:59:19        3788. 0.496 10875   303      8      100 FALSE
#>  7 2018-06-09 18:59:19        3789. 0.643 10921   303      8      100 FALSE
#>  8 2018-06-09 18:59:19        3789. 0.736 10967   304      8      100 FALSE
#>  9 2018-06-09 18:59:19        3789. 0.943 10990   305      8      100 FALSE
#> 10 2018-06-09 18:59:19        3789. 0.976 11014   306      8      100 FALSE
#> # ℹ 524 more rows
#> # ℹ 11 more variables: drs <dbl>, source <chr>, relative_distance <dbl>,
#> #   status <chr>, x <dbl>, y <dbl>, z <dbl>, distance <dbl>,
#> #   driver_ahead <chr>, distance_to_driver_ahead <dbl>, …

Lap-by-Lap information

load_session_laps(season = "current", race = "last", session = "R", add_weather = FALSE)

This function will give us detailed information of lap and sector times, tyres, weather (optional), and more for every lap of the GP and driver.

load_session_laps(season = 2023, round = 4, add_weather = TRUE)
#> # A tibble: 962 × 39
#>     time driver driver_number lap_time lap_number stint pit_out_time pit_in_time
#>    <dbl> <chr>  <chr>            <dbl>      <dbl> <dbl>        <dbl>       <dbl>
#>  1 3892. VER    1                 110.          1     1          NaN        NaN 
#>  2 4000. VER    1                 108.          2     1          NaN        NaN 
#>  3 4108. VER    1                 108.          3     1          NaN        NaN 
#>  4 4215. VER    1                 107.          4     1          NaN        NaN 
#>  5 4322. VER    1                 107.          5     1          NaN        NaN 
#>  6 4430. VER    1                 107.          6     1          NaN        NaN 
#>  7 4537. VER    1                 107.          7     1          NaN        NaN 
#>  8 4643. VER    1                 107.          8     1          NaN        NaN 
#>  9 4750. VER    1                 107.          9     1          NaN        NaN 
#> 10 4861. VER    1                 111.         10     1          NaN       4860.
#> # ℹ 952 more rows
#> # ℹ 31 more variables: sector1time <dbl>, sector2time <dbl>, sector3time <dbl>,
#> #   sector1session_time <dbl>, sector2session_time <dbl>,
#> #   sector3session_time <dbl>, speed_i1 <dbl>, speed_i2 <dbl>, speed_fl <dbl>,
#> #   speed_st <dbl>, …

Circuit Data

load_circuit_details(2023, 4)

This function loads circuit details for a specific race session. Note that different track layouts are used at some circuits depending on the year of the race. Useful for visualizing or annotating data. Contains information on corners, marshal_lights and marshal_sectors.

Plotting

plot_fastest(season = "current", round = "last", session = "R", driver, color = "gear")

A built in plotting function that plots the circuit and a driver’s fastest laps’ speed or gear exists.

plot_fastest(season = 2023, round = 1, session = "R", driver = "VER", color = "gear")

Two helper functions exist as well. The first, theme_dark_f1() assists with colour schemes similar to that used in other F1 graphics. The second, correct_track_ratio() is a function that fixes track ratio issues that appear when you create images similar to that above from plot_fastest(). Please refer to their documentation for usage.

Metadata Lookups

The package echos the metadata information look-up from the FastF1 package. this is a convenient way to programmatically look up drivers, teams, driver-team relationships, team colors, driver colors, tire types & colors and more. See the following functions for this look-up:

Note that (in support of plotting functions) driver colors and marker type / line style can be retrieved from get_driver_style(). The function get_driver_color() will return the same color value for both drivers in a team.

Cache information

The cache directory for sessions can be set manually with the options function

options(f1dataR.cache = "path/to/directory")

Other functions

Many other functions exist, and are flexible enough to call the current season with the string "current" or use the year as a numeric value. Similarly, round can be "last" or a round number (from 1 to the total number of races in a season).

Clear F1 Cache

clear_f1_cache()

Clears the cache for all functions in the package.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.