The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The {fHMM}
R package allows for the detection and
characterization of financial market regimes in time series data by
applying hidden Markov Models (HMMs). The vignettes outline the
package functionality and the model formulation.
For a reference on the method, see:
Oelschläger, L., and Adam, T. 2021. “Detecting Bearish and Bullish Markets in Financial Time Series Using Hierarchical Hidden Markov Models.” Statistical Modelling. https://doi.org/10.1177/1471082X211034048
A user guide is provided by the accompanying software paper:
Oelschläger, L., Adam, T., and Michels, R. 2024. “fHMM: Hidden Markov Models for Financial Time Series in R”. Journal of Statistical Software. https://doi.org/10.18637/jss.v109.i09
Below, we illustrate an application to the German stock index DAX. We also show how to use the package to simulate HMM data, compute the model likelihood, and decode the hidden states using the Viterbi algorithm.
You can install the released package version from CRAN with:
install.packages("fHMM")
We are open to contributions and would appreciate your input:
If you encounter any issues, please submit bug reports as issues.
If you have any ideas for new features, please submit them as feature requests.
If you would like to add extensions to the package, please fork
the master
branch and submit a merge request.
We fit a 3-state HMM with state-dependent t-distributions to the DAX log-returns from 2000 to 2022. The states can be interpreted as proxies for bearish (green below) and bullish markets (red) and an “in-between” market state (yellow).
library("fHMM")
The package has a build-in function to download financial data from Yahoo Finance:
<- download_data(symbol = "^GDAXI") dax
We first need to define the model:
<- set_controls(
controls states = 3,
sdds = "t",
file = dax,
date_column = "Date",
data_column = "Close",
logreturns = TRUE,
from = "2000-01-01",
to = "2022-12-31"
)
The function prepare_data()
then prepares the data for
estimation:
<- prepare_data(controls) data
The summary()
method gives an overview:
summary(data)
#> Summary of fHMM empirical data
#> * number of observations: 5882
#> * data source: data.frame
#> * date column: Date
#> * log returns: TRUE
We fit the model and subsequently decode the hidden states and compute (pseudo-) residuals:
<- fit_model(data)
model <- decode_states(model)
model <- compute_residuals(model) model
The summary()
method gives an overview of the model
fit:
summary(model)
#> Summary of fHMM model
#>
#> simulated hierarchy LL AIC BIC
#> 1 FALSE FALSE 17650.02 -35270.05 -35169.85
#>
#> State-dependent distributions:
#> t()
#>
#> Estimates:
#> lb estimate ub
#> Gamma_2.1 2.754e-03 5.024e-03 9.110e-03
#> Gamma_3.1 2.808e-16 2.781e-16 2.739e-16
#> Gamma_1.2 1.006e-02 1.839e-02 3.338e-02
#> Gamma_3.2 1.514e-02 2.446e-02 3.927e-02
#> Gamma_1.3 5.596e-17 5.549e-17 5.464e-17
#> Gamma_2.3 1.196e-02 1.898e-02 2.993e-02
#> mu_1 -3.862e-03 -1.793e-03 2.754e-04
#> mu_2 -7.994e-04 -2.649e-04 2.696e-04
#> mu_3 9.642e-04 1.272e-03 1.579e-03
#> sigma_1 2.354e-02 2.586e-02 2.840e-02
#> sigma_2 1.225e-02 1.300e-02 1.380e-02
#> sigma_3 5.390e-03 5.833e-03 6.312e-03
#> df_1 5.550e+00 1.084e+01 2.116e+01
#> df_2 6.785e+00 4.866e+01 3.489e+02
#> df_3 3.973e+00 5.248e+00 6.934e+00
#>
#> States:
#> decoded
#> 1 2 3
#> 704 2926 2252
#>
#> Residuals:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.517900 -0.664018 0.012170 -0.003262 0.673180 3.693568
Having estimated the model, we can visualize the state-dependent distributions and the decoded time series:
<- fHMM_events(
events list(dates = c("2001-09-11", "2008-09-15", "2020-01-27"),
labels = c("9/11 terrorist attack", "Bankruptcy Lehman Brothers", "First COVID-19 case Germany"))
)plot(model, plot_type = c("sdds","ts"), events = events)
The (pseudo-) residuals help to evaluate the model fit:
plot(model, plot_type = "pr")
The {fHMM}
package supports data simulation from an HMM
and access to the model likelihood function for model fitting and the
Viterbi algorithm for state decoding.
<- set_controls(
controls states = 2,
sdds = "gamma",
horizon = 1000
)
fHMM_parameters()
function (unspecified parameters would be set at random).<- fHMM_parameters(
par controls = controls,
Gamma = matrix(c(0.95, 0.05, 0.05, 0.95), 2, 2),
mu = c(1, 3),
sigma = c(1, 3)
)
simulate_hmm()
function.<- simulate_hmm(
sim controls = controls,
true_parameters = par
)plot(sim$data, col = sim$markov_chain, type = "b")
ll_hmm()
is evaluated at
the identified and unconstrained parameter values, they can be derived
via the par2parUncon()
function.<- par2parUncon(par, controls))
(parUncon #> gammasUncon_21 gammasUncon_12 muUncon_1 muUncon_2 sigmaUncon_1
#> -2.944439 -2.944439 0.000000 1.098612 0.000000
#> sigmaUncon_2
#> 1.098612
#> attr(,"class")
#> [1] "parUncon" "numeric"
Note that this transformation takes care of the restrictions, that
Gamma
must be a transition probability matrix (which we can
ensure via the logit link) and that mu
and
sigma
must be positive (an assumption for the Gamma
distribution, which we can ensure via the exponential link).
ll_hmm(parUncon, sim$data, controls)
#> [1] -1620.515
ll_hmm(parUncon, sim$data, controls, negative = TRUE)
#> [1] 1620.515
ll_hmm()
over parUncon
(or rather minimize the negative log-likelihood).<- nlm(
optimization f = ll_hmm, p = parUncon, observations = sim$data, controls = controls, negative = TRUE
)
<- optimization$estimate)
(estimate #> [1] -3.46338992 -3.44065582 0.05999848 1.06452907 0.11517811 1.07946252
parUncon2par()
function. The state-labeling is not identified.class(estimate) <- "parUncon"
<- parUncon2par(estimate, controls)
estimate
$Gamma
par#> state_1 state_2
#> state_1 0.95 0.05
#> state_2 0.05 0.95
$Gamma
estimate#> state_1 state_2
#> state_1 0.96895125 0.03104875
#> state_2 0.03037204 0.96962796
$mu
par#> muCon_1 muCon_2
#> 1 3
$mu
estimate#> muCon_1 muCon_2
#> 1.061835 2.899473
$sigma
par#> sigmaCon_1 sigmaCon_2
#> 1 3
$sigma
estimate#> sigmaCon_1 sigmaCon_2
#> 1.122073 2.943097
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.