The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
First, we need to install fastaudio module
.
reticulate::py_install('fastaudio',pip = TRUE)
Grab data:
See audio extensions:
Read files:
Read audio data and visualize a tensor:
fastaudio has a AudioConfig class which allows us to prepare different settings for our dataset. Currently it has:
Voice module is the most suitable because it contains human voices.
Turn data into spectrogram and crop signal:
Create a pipeline and see the result:
As usual, prepare a datalaoder:
item_tfms = list(ResizeSignal(1000), aud2spec)
get_y = function(x) substring(x$name[1],1,1)
aud_digit = DataBlock(blocks = list(AudioBlock(), CategoryBlock()),
get_items = get_audio_files,
splitter = RandomSplitter(),
item_tfms = item_tfms,
get_y = get_y)
dls = aud_digit %>% dataloaders(source = path_dig, bs = 64)
dls %>% show_batch(figsize = c(15, 8.5), nrows = 3, ncols = 3, max_n = 9, dpi = 180)
We will use a pretrained ResNet model. However, the channel number and weight dimension have to be changed:
torch = torch()
nn = nn()
learn = Learner(dls, xresnet18(pretrained = FALSE), nn$CrossEntropyLoss(), metrics=accuracy)
# channel from 3 to 1
learn$model[0][0][['in_channels']] %f% 1L
# reshape
new_weight_shape <- torch$nn$parameter$Parameter(
(learn$model[0][0]$weight %>% narrow('[:,1,:,:]'))$unsqueeze(1L))
# assign with %f%
learn$model[0][0][['weight']] %f% new_weight_shape
Find lr
:
And fit
:
epoch train_loss valid_loss accuracy time
0 5.494162 3.295561 0.632812 00:06
1 1.962470 0.236809 0.877604 00:06
2 0.801965 0.174774 0.917969 00:06
3 0.391742 0.208425 0.881510 00:06
4 0.243276 0.149436 0.914062 00:06
5 0.174708 0.134832 0.929688 00:07
6 0.142626 0.127814 0.910156 00:06
7 0.131042 0.120308 0.924479 00:07
8 0.121679 0.126913 0.919271 00:06
9 0.118215 0.114659 0.924479 00:06
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.