The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette profiles FileArray
operations and compares
with R native functions. The goal is to
The simulation was performed on
MacBook Air 2020 (M1 Chip, ARM, 8GB RAM)
, with R
4.1.0
. To reproduce the results, please install
CRAN
packages dipsaus
and
microbenchmark
.
We mainly test the performance of double
and
float
data type. The dimensions for both arrays are
100x100x100x100
. Both arrays are around 800MB
in native R. This is because R does not have float precision. However,
while double
array occupies 800MB
space on the
hard disk, float
array only uses half size
(400MB
).
library(filearray)
options(digits = 3)
filearray_threads()
#> [1] 8
# Create file array and initialize partitions
set.seed(1)
file <- tempfile(); unlink(file, recursive = TRUE)
x_dbl <- filearray_create(file, rep(100, 4))
x_dbl$initialize_partition()
file <- tempfile(); unlink(file, recursive = TRUE)
x_flt <- filearray_create(file, rep(100, 4), type = 'float')
x_flt$initialize_partition()
# 800 MB double array
y <- array(rnorm(length(x_dbl)), dim(x_dbl))
The simulation contains
Writing along margins refer to something like
x[,,,i] <- v
(along the last margin), or
x[,i,,] <- v
(along the second margin). It is always
recommended to write along the last margin, and always discouraged to
write along the first margin to file arrays.
microbenchmark::microbenchmark(
double = {
for(i in 1:100){
x_dbl[,,,i] <- y[,,,i]
}
},
float = {
for(i in 1:100){
x_flt[,,,i] <- y[,,,i]
}
}, unit = 's', times = 3
)
#> Unit: seconds
#> expr min lq mean median uq max neval
#> double 0.933 0.935 1.44 0.936 1.69 2.45 3
#> float 1.027 1.057 1.07 1.086 1.10 1.11 3
microbenchmark::microbenchmark(
double = {
for(i in 1:100){
x_dbl[,,i,] <- y[,,i,]
}
},
float = {
for(i in 1:100){
x_flt[,,i,] <- y[,,i,]
}
}, unit = 's', times = 3
)
#> Unit: seconds
#> expr min lq mean median uq max neval
#> double 1.23 1.27 1.47 1.30 1.59 1.89 3
#> float 1.23 1.24 1.41 1.24 1.50 1.76 3
microbenchmark::microbenchmark(
double = {
for(i in 1:100){
x_dbl[i,,,] <- y[i,,,]
}
},
float = {
for(i in 1:100){
x_flt[i,,,] <- y[i,,,]
}
}, unit = 's', times = 3
)
#> Unit: seconds
#> expr min lq mean median uq max neval
#> double 3.18 3.22 3.28 3.27 3.32 3.38 3
#> float 20.04 20.04 20.44 20.05 20.64 21.22 3
In the current version, converting from double
to
float
introduces overhead that delays the procedure.
Instead of writing one slice at a time along each margin, we write
100x100x100x5
(10 slices) each time.
microbenchmark::microbenchmark(
double = {
for(i in 1:10){
idx <- (i-1)*10 + 1:10
x_dbl[,,,idx] <- y[,,,idx]
}
},
float = {
for(i in 1:10){
idx <- (i-1)*10 + 1:10
x_flt[,,,idx] <- y[,,,idx]
}
}, unit = 's', times = 3
)
#> Unit: seconds
#> expr min lq mean median uq max neval
#> double 0.650 0.684 0.911 0.718 1.041 1.37 3
#> float 0.626 0.662 0.783 0.698 0.861 1.02 3
microbenchmark::microbenchmark(
double = {
for(i in 1:10){
idx <- (i-1)*10 + 1:10
x_dbl[,,idx,] <- y[,,idx,]
}
},
float = {
for(i in 1:10){
idx <- (i-1)*10 + 1:10
x_flt[,,idx,] <- y[,,idx,]
}
}, unit = 's', times = 3
)
#> Unit: seconds
#> expr min lq mean median uq max neval
#> double 0.582 0.620 0.668 0.657 0.710 0.763 3
#> float 0.625 0.652 0.732 0.679 0.786 0.893 3
microbenchmark::microbenchmark(
double = {
for(i in 1:10){
idx <- (i-1)*10 + 1:10
x_dbl[idx,,,] <- y[idx,,,]
}
},
float = {
for(i in 1:10){
idx <- (i-1)*10 + 1:10
x_flt[idx,,,] <- y[idx,,,]
}
}, unit = 's', times = 3
)
#> Unit: seconds
#> expr min lq mean median uq max neval
#> double 4.48 4.48 4.64 4.48 4.72 4.95 3
#> float 2.64 2.70 2.73 2.77 2.78 2.79 3
microbenchmark::microbenchmark(
farr_double_partition_margin = { x_dbl[,,,1] },
farr_double_fast_margin = { x_dbl[,,1,] },
farr_double_slow_margin = { x_dbl[1,,,] },
farr_float_partition_margin = { x_flt[,,,1] },
farr_float_fast_margin = { x_flt[,,1,] },
farr_float_slow_margin = { x_flt[1,,,] },
native_partition_margin = { y[,,,1] },
native_fast_margin = { y[,,1,] },
native_slow_margin = { y[1,,,] },
times = 100L, unit = "ms"
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> farr_double_partition_margin 2.01 2.66 4.02 2.85 3.64 71.06 100
#> farr_double_fast_margin 1.35 1.99 3.16 2.35 3.79 25.88 100
#> farr_double_slow_margin 33.25 36.52 44.11 37.32 38.76 125.61 100
#> farr_float_partition_margin 1.77 2.40 3.96 2.61 3.66 58.17 100
#> farr_float_fast_margin 1.33 1.85 2.80 2.08 3.43 11.01 100
#> farr_float_slow_margin 14.98 18.86 23.42 19.54 20.47 160.90 100
#> native_partition_margin 3.42 3.75 4.14 4.02 4.27 6.89 100
#> native_fast_margin 3.42 3.96 4.86 4.09 4.64 54.74 100
#> native_slow_margin 21.52 22.15 24.34 22.65 23.97 91.06 100
The file array indexing is close to handling in-memory arrays in R!
# access 50 x 50 x 50 x 50 sub-array, with random indices
idx1 <- sample(1:100, 50)
idx2 <- sample(1:100, 50)
idx3 <- sample(1:100, 50)
idx4 <- sample(1:100, 50)
microbenchmark::microbenchmark(
farr_double = { x_dbl[idx1, idx2, idx3, idx4] },
farr_float = { x_flt[idx1, idx2, idx3, idx4] },
native = { y[idx1, idx2, idx3, idx4] },
times = 100L, unit = "ms"
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> farr_double 11.68 13.13 18.9 13.81 15.2 143.3 100
#> farr_float 8.29 8.89 12.0 9.95 10.6 63.6 100
#> native 30.86 31.94 34.0 32.62 33.1 103.0 100
Random access could be faster than base R (also much less memory!)
Collapse calculates the margin sum/mean. Collapse function in
filearray
uses single thread. This is because the
bottle-neck often comes from hard-disk accessing speed. However, it is
still faster than native R, and is more memory-efficient.
keep <- c(2, 4)
output <- filearray_create(tempfile(), dim(x_dbl)[keep])
output$initialize_partition()
microbenchmark::microbenchmark(
farr_double = { x_dbl$collapse(keep = keep, method = "sum") },
farr_float = { x_flt$collapse(keep = keep, method = "sum") },
native = { apply(y, keep, sum) },
ravetools = { ravetools::collapse(y, keep, average = FALSE) },
unit = "s", times = 5
)
#> Unit: seconds
#> expr min lq mean median uq max neval
#> farr_double 0.651 0.666 0.867 0.716 0.718 1.583 5
#> farr_float 0.628 0.637 0.737 0.642 0.652 1.124 5
#> native 1.011 1.029 1.128 1.078 1.207 1.316 5
#> ravetools 0.109 0.110 0.126 0.131 0.138 0.139 5
The ravetools
package uses multiple threads to collapse
arrays in-memory. It is 7~8x
as fast as base R. File array
is 1.5~2x
as fast as base R. Both ravetools
and filearray
have little memory over-heads.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.