The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Fillr is an R package. The goal of fillr is to edit vectors to fill missing values, based on the vector itself. These functions are best used on variables within a grouped data frame.
Fillr is on CRAN, you can install the stable release using
# Install release version from CRAN
intall.packages("fillr")
# Install development version from GitHub
::install_github("jelger12/fillr") devtools
When you want to fill values in a vector with another value, the fillr functions can be used to impute all NA values based on some set rules.
Fill the NA values with the minimum, maximum or last value
fill_missing_min(c(1, 2, 1, 1, NA))
#> [1] 1 2 1 1 1
fill_missing_max(c(1, 2, 1, 1, NA))
#> [1] 1 2 1 1 2
fill_missing_last(c(1, NA, 1, 2, NA))
#> [1] 1 2 1 2 2
Fill the NA values with the same value, only when all non-NA values are the same
fill_missing_strict(c(1, NA, 1, 1, NA))
#> [1] 1 1 1 1 1
fill_missing_strict(c("a", NA, "a", "a", NA))
#> [1] "a" "a" "a" "a" "a"
Fill the NA values with the previous value (repeating with multiple repeating NA values)
fill_missing_previous(c(1, NA, 1, 2, NA, NA))
#> [1] 1 1 1 2 2 2
Fill missing values given the observed interval within the vector
fill_missing_interval(c(NA, NA, 2, 4, NA, NA))
#> [1] -2 0 2 4 6 8
Fillr is best used within a grouped data frame. You can use the
fill_missing_
functions to fill the missing values within
the groups.
# Use tibble and dplyr for this example
library(tibble)
library(dplyr)
# Create a tibble with missing values
<-tibble(group = c("a", "a", "a", "b", "b", "b"),
df value = c(NA, 1 , NA, 5, 6, NA))
df#> # A tibble: 6 x 2
#> group value
#> <chr> <dbl>
#> 1 a NA
#> 2 a 1
#> 3 a NA
#> 4 b 5
#> 5 b 6
#> 6 b NA
# Use fillr functions to fill the missing data
%>%
df group_by(group) %>%
mutate(value_strict = fill_missing_strict(value),
value_min = fill_missing_min(value),
value_previous = fill_missing_previous(value))
#> # A tibble: 6 x 5
#> # Groups: group [2]
#> group value value_strict value_min value_previous
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 a NA 1 1 NA
#> 2 a 1 1 1 1
#> 3 a NA 1 1 1
#> 4 b 5 5 5 5
#> 5 b 6 6 6 6
#> 6 b NA NA 5 6
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.