The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
finetune
contains some extra functions for model tuning that extend what is currently in the tune
package. You can install the CRAN version of the package with the following code:
To install the development version of the package, run:
There are two main sets of tools in the package: simulated annealing and racing.
Tuning via simulated annealing optimization is an iterative search tool for finding good values:
library(tidymodels)
library(finetune)
# Syntax very similar to `tune_grid()` or `tune_bayes()`:
## -----------------------------------------------------------------------------
data(two_class_dat, package = "modeldata")
set.seed(1)
rs <- bootstraps(two_class_dat, times = 10) # more resamples usually needed
# Optimize a regularized discriminant analysis model
library(discrim)
rda_spec <-
discrim_regularized(frac_common_cov = tune(), frac_identity = tune()) %>%
set_engine("klaR")
## -----------------------------------------------------------------------------
set.seed(2)
sa_res <-
rda_spec %>%
tune_sim_anneal(Class ~ ., resamples = rs, iter = 20, initial = 4)
#> Optimizing roc_auc
#> Initial best: 0.86480
#> 1 ♥ new best roc_auc=0.87327 (+/-0.004592)
#> 2 ♥ new best roc_auc=0.87915 (+/-0.003864)
#> 3 ◯ accept suboptimal roc_auc=0.87029 (+/-0.004994)
#> 4 + better suboptimal roc_auc=0.87171 (+/-0.004717)
#> 5 ◯ accept suboptimal roc_auc=0.86944 (+/-0.005081)
#> 6 ◯ accept suboptimal roc_auc=0.86812 (+/-0.0052)
#> 7 ♥ new best roc_auc=0.88172 (+/-0.003647)
#> 8 ◯ accept suboptimal roc_auc=0.87678 (+/-0.004276)
#> 9 ◯ accept suboptimal roc_auc=0.8627 (+/-0.005784)
#> 10 + better suboptimal roc_auc=0.87003 (+/-0.005106)
#> 11 + better suboptimal roc_auc=0.87088 (+/-0.004962)
#> 12 ◯ accept suboptimal roc_auc=0.86803 (+/-0.005195)
#> 13 ◯ accept suboptimal roc_auc=0.85294 (+/-0.006498)
#> 14 ─ discard suboptimal roc_auc=0.84689 (+/-0.006867)
#> 15 ✖ restart from best roc_auc=0.85021 (+/-0.006623)
#> 16 ◯ accept suboptimal roc_auc=0.87607 (+/-0.004318)
#> 17 ◯ accept suboptimal roc_auc=0.87245 (+/-0.004799)
#> 18 + better suboptimal roc_auc=0.87706 (+/-0.004131)
#> 19 ◯ accept suboptimal roc_auc=0.87213 (+/-0.004791)
#> 20 ◯ accept suboptimal roc_auc=0.86218 (+/-0.005773)
show_best(sa_res, metric = "roc_auc", n = 2)
#> # A tibble: 2 × 9
#> frac_common_cov frac_identity .metric .estimator mean n std_err .config
#> <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 0.308 0.0166 roc_auc binary 0.882 10 0.00365 Iter7
#> 2 0.121 0.0474 roc_auc binary 0.879 10 0.00386 Iter2
#> # ℹ 1 more variable: .iter <int>
The second set of methods are for racing. We start off by doing a small set of resamples for all of the grid points, then statistically testing to see which ones should be dropped or investigated more. The two methods here are based on those should in Kuhn (2014).
For example, using an ANOVA-type analysis to filter out parameter combinations:
set.seed(3)
grid <-
rda_spec %>%
extract_parameter_set_dials() %>%
grid_max_entropy(size = 20)
ctrl <- control_race(verbose_elim = TRUE)
set.seed(4)
grid_anova <-
rda_spec %>%
tune_race_anova(Class ~ ., resamples = rs, grid = grid, control = ctrl)
#> ℹ Evaluating against the initial 3 burn-in resamples.
#> ℹ Racing will maximize the roc_auc metric.
#> ℹ Resamples are analyzed in a random order.
#> ℹ Bootstrap10: 14 eliminated; 6 candidates remain.
#>
#> ℹ Bootstrap04: 2 eliminated; 4 candidates remain.
#>
#> ℹ Bootstrap03: All but one parameter combination were eliminated.
show_best(grid_anova, metric = "roc_auc", n = 2)
#> # A tibble: 1 × 8
#> frac_common_cov frac_identity .metric .estimator mean n std_err .config
#> <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 0.831 0.0207 roc_auc binary 0.881 10 0.00386 Preproce…
tune_race_win_loss()
can also be used. It treats the tuning parameters as sports teams in a tournament and computed win/loss statistics.
set.seed(4)
grid_win_loss<-
rda_spec %>%
tune_race_win_loss(Class ~ ., resamples = rs, grid = grid, control = ctrl)
#> ℹ Racing will maximize the roc_auc metric.
#> ℹ Resamples are analyzed in a random order.
#> ℹ Bootstrap10: 3 eliminated; 17 candidates remain.
#>
#> ℹ Bootstrap04: 2 eliminated; 15 candidates remain.
#>
#> ℹ Bootstrap03: 2 eliminated; 13 candidates remain.
#>
#> ℹ Bootstrap01: 1 eliminated; 12 candidates remain.
#>
#> ℹ Bootstrap07: 1 eliminated; 11 candidates remain.
#>
#> ℹ Bootstrap05: 1 eliminated; 10 candidates remain.
#>
#> ℹ Bootstrap08: 1 eliminated; 9 candidates remain.
show_best(grid_win_loss, metric = "roc_auc", n = 2)
#> # A tibble: 2 × 8
#> frac_common_cov frac_identity .metric .estimator mean n std_err .config
#> <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 0.831 0.0207 roc_auc binary 0.881 10 0.00386 Preproce…
#> 2 0.119 0.0470 roc_auc binary 0.879 10 0.00387 Preproce…
This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
For questions and discussions about tidymodels packages, modeling, and machine learning, please post on Posit Community.
If you think you have encountered a bug, please submit an issue.
Either way, learn how to create and share a reprex (a minimal, reproducible example), to clearly communicate about your code.
Check out further details on contributing guidelines for tidymodels packages and how to get help.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.