The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Tips for Production

Manage Dependencies

Finn continues to get updated on a regular basis. A best practice is to ensure you are using a specific version of Finn for your production forecast. This can be done through the use of the renv package while using Finn on your local machine, or using docker containers for running Finn in the cloud.

Azure ML Pipelines

Finn was built to run at scale in Azure, leveraging spark as the parallel back end. Check out the parallel processing vignette to learn how to get Finn running on Azure services like Databricks. The best way to run Finn in production is through the use of Azure Machine Learning, specifically Azure ML Pipelines.

Below are a few tips for leveraging Azure ML Pipelines

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.