The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
{fioRa} 0.3.4FIORA is an in silico fragmentation algorithm designed to predict tandem mass spectra (MS/MS) with high accuracy. Using a graph neural network, FIORA models bond cleavages, fragment intensities, and estimates retention times (RT) and collision cross sections (CCS).
The original model and prediction algorithm is implemented in Python and can be found at its GitHub Repo. The full description of the algorithm is published in a Nature Communications article.
The R package {fioRa} provides a wrapper for
FIORA, to either run the Python script using the R
function run_script() or start a GUI (Shiny-App) using the
R function run_app().
You can install the development version of {fioRa} from
GitHub.
install.packages("devtools")
devtools::install_github("janlisec/fioRa")Before first use you need to set up a python installation and a conda
environment fiora which can be achieved from within R with the
help of the reticulate package and a convenience
function.
fioRa::install_fiora()
#> No valid 'default_path' provided, using reticulate::miniconda_path 'C:/Users/jlisec/AppData/Local/r-miniconda'.
#> $os
#> [1] "Windows"
#>
#> $python
#> [1] "C:\\Users\\jlisec\\AppData\\Local\\r-miniconda\\envs\\fiora\\python.exe"
#>
#> $script
#> [1] "C:\\Users\\jlisec\\AppData\\Local\\r-miniconda\\envs\\fiora\\Scripts\\fiora-predict"Now, you can launch the application as a Shiny-App.
fioRa::run_app()
Alternatively you can use the exported function
run_script() to work in the R command line directly. This
will accept R styled input parameters, generate an appropriate temporary
FIORA input file, process it and return an R styled
list including the predicted MS/MS spectrum.
x <- data.frame(
Name = "Example_0",
SMILES = "CC1=CC(=O)OC2=CC(OS(O)(=O)=O)=CC=C12",
Precursor_type = "[M-H]-",
CE = 17,
Instrument_type = "HCD"
)
fioRa::run_script(x = x, annotation = TRUE)
#> No valid 'default_path' provided, using reticulate::miniconda_path 'C:/Users/jlisec/AppData/Local/r-miniconda'.
#> $Example_0
#> $Example_0$TITLE
#> [1] "Example_0"
#>
#> $Example_0$SMILES
#> [1] "CC1=CC(=O)OC2=CC(OS(O)(=O)=O)=CC=C12"
#>
#> $Example_0$FORMULA
#> [1] "C10H8O6S"
#>
#> $Example_0$PRECURSOR_MZ
#> [1] "254.99688252391005"
#>
#> $Example_0$PRECURSORTYPE
#> [1] "[M-H]-"
#>
#> $Example_0$COLLISIONENERGY
#> [1] "17.0"
#>
#> $Example_0$INSTRUMENTTYPE
#> [1] "HCD"
#>
#> $Example_0$COMMENT
#> [1] "\"In silico generated spectrum by FIORA OS v1.0.0\""
#>
#> $Example_0$spec
#> mz int SMILES adduct formula
#> 1 78.94844 0.013833499 O=[SH](=O)O [M-3H]- H2O3S
#> 2 79.95681 0.002825602 O=[SH](=O)O [M-2H]- H2O3S
#> 3 175.03897 0.899893463 Cc1cc(=O)oc2cc(O)ccc12 [M-H]- C10H8O3
#> 4 254.99688 0.102497801 Cc1cc(=O)oc2cc(OS(=O)(=O)O)ccc12 [M-H]- C10H8O6SYou are reading the doc about version 0.3.4 compiled on 2025-11-03 11:24:08.729794.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.