Package ‘firmmatchr’

February 11, 2026
Title Robust Probabilistic Matching for German Company Names
Version 0.1.2

Description
A pipeline for matching messy company name strings against a clean dictionary (e.g., 'Orbis’).
Implements a cascading strategy: Exact -> Fuzzy ('zoomerjoin') -> 'FTS5' ('SQLite") -
> Rarity Weighted.
References: Beniamino Green (2025) <https://beniamino.org/zoomerjoin/>; <https:
//www.sqlite.org/fts5.html>.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2

Imports data.table, stringi, stringdist, zoomerjoin, DBI, RSQLite,
cli, progressr, httr, jsonlite, glue, purrr, readr, dplyr

Suggests testthat

NeedsCompilation no

Author Giulian Etingin-Frati [aut, cre]

Maintainer Giulian Etingin-Frati <etingin-frati@kof.ethz.ch>
Repository CRAN

Date/Publication 2026-02-11 19:50:07 UTC

Contents

match_Companies e e e
normalize_company_Namet i i e e e e e
validate_matches I1lm

Index

https://beniamino.org/zoomerjoin/
https://www.sqlite.org/fts5.html
https://www.sqlite.org/fts5.html

2 match_companies

match_companies Match Company Names against a Dictionary

Description

Runs a cascading matching pipeline: Exact -> Fuzzy (Zoomer) -> FTS5 -> Rarity. Matches found
in earlier steps are removed from subsequent steps.

Usage
match_companies(

queries,
dictionary,
query_col = "company_name"”,
dict_col = "company_name",
unique_id_col = "query_id",
dict_id_col = "orbis_id",

threshold_jw = 0.8,
threshold_zoomer = 0.4,
threshold_rarity = 1,
n_cores =1

)

Arguments
queries Data frame. Must contain columns specified in query_col and unique_id_col.
dictionary Data frame. Must contain columns specified in dict_col and dict_id_col.
query_col String. Column name for company names in queries.
dict_col String. Column name for company names in dictionary.

unique_id_col String. ID column in queries.
dict_id_col String. ID column in dictionary.

threshold_jw Numeric (0-1). Minimum Jaro-Winkler similarity. Default 0.8.
threshold_zoomer

Numeric (0-1). Jaccard threshold for blocking. Default 0.4.
threshold_rarity

Numeric. Minimum score for rarity matching. Default 1.0.

n_cores Integer. Number of cores (reserved for future parallel implementation).

Value

A data.table containing query_id, dict_id, and match_type.

normalize_company_name 3

Examples

Create sample query data
queries <- data.frame(
query_id = 1:3,
company_name = c("BMW", "Siemens AG", "Deutsche Bank")

)

Create sample dictionary
dictionary <- data.frame(
orbis_id = c("De@1", "De@2", "D@e3"),
company_name = c("BMW AG", "Siemens Aktiengesellschaft”, "Commerzbank AG")

)

Match companies

results <- match_companies(
queries = queries,
dictionary = dictionary,
query_col = "company_name”,
dict_col = "company_name"”,
unique_id_col = "query_id",
dict_id_col = "orbis_id"

print(results)

normalize_company_name
Normalize Company Names

Description

Standardizes company names by lowercasing, removing legal suffixes, translating characters to
ASCII, and removing noise words.

Usage

normalize_company_name(x)

Arguments

X A character vector of company names.

Value

A character vector of normalized names.

Examples

validate_matches_I1lm

Normalize a single company name
normalize_company_name("BMW AG")
normalize_company_name("Siemens GmbH & Co. KG")

Normalize multiple names
companies <- c("Deutsche Bank AG", "VW Group”, "BASF SE")
normalize_company_name(companies)

validate_matches_11lm Validate Matches using LLM (Azure OpenAl)

Description

Sends doubtful matches (not "Perfect” or "Unmatched") to an LLM for verification. Supports re-
suming from interruptions via chunk files.

Usage

validate_matches_11m(

data,

query_name_col,
dict_name_col,

output_dir = tempdir(),
filename_stem = "match_validation”,
batch_size = 20,

api_key = Sys.getenv("AZURE_API_KEY"),
endpoint = Sys.getenv("AZURE_ENDPOINT"),
deployment = Sys.getenv("AZURE_DEPLOYMENT")

Arguments

data
query_name_col
dict_name_col
output_dir
filename_stem
batch_size
api_key
endpoint

deployment

Value

Data frame. Must contain the columns specified by query_name_col and dict_name_col.
String. Column containing the user’s query name (Employer).

String. Column containing the dictionary match name (Registry).

String. Directory to save temporary chunks and final results. Defaults to tempdir ().
String. Base name for output files.

Integer. Number of rows to process before saving a chunk.

String. Azure API Key. Defaults to Sys.getenv("AZURE_API_KEY").

String. Azure Endpoint. Defaults to Sys. getenv("AZURE_ENDPOINT").

String. Deployment name. Defaults to Sys. getenv(”AZURE_DEPLOYMENT").

A data frame with added LLM_decision and LLM_reason columns.

validate_matches_1Im

Examples

Not run:

Sample matched data

matched_data <- data.frame(
employer_name = c("BMW", "Siemens"),
registry_name = c("BMW AG", "SAP SE"),
dict_id = c("De0@1", "D0e2"),
match_type = c("Fuzzy"”, "Fuzzy")

)

Validate using LLM (requires Azure credentials)
validated <- validate_matches_11m(
data = matched_data,

query_name_col = "employer_name",
dict_name_col = "registry_name”

)

print(validated)

End(Not run)

Index

match_companies, 2
normalize_company_name, 3

validate_matches_11m, 4

	match_companies
	normalize_company_name
	validate_matches_llm
	Index

