
Package ‘firmmatchr’
February 11, 2026

Title Robust Probabilistic Matching for German Company Names

Version 0.1.2

Description
A pipeline for matching messy company name strings against a clean dictionary (e.g., 'Orbis').
Implements a cascading strategy: Exact -> Fuzzy ('zoomerjoin') -> 'FTS5' ('SQLite') -
> Rarity Weighted.
References: Beniamino Green (2025) <https://beniamino.org/zoomerjoin/>; <https:
//www.sqlite.org/fts5.html>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports data.table, stringi, stringdist, zoomerjoin, DBI, RSQLite,
cli, progressr, httr, jsonlite, glue, purrr, readr, dplyr

Suggests testthat

NeedsCompilation no

Author Giulian Etingin-Frati [aut, cre]

Maintainer Giulian Etingin-Frati <etingin-frati@kof.ethz.ch>

Repository CRAN

Date/Publication 2026-02-11 19:50:07 UTC

Contents

match_companies . 2
normalize_company_name . 3
validate_matches_llm . 4

Index 6

1

https://beniamino.org/zoomerjoin/
https://www.sqlite.org/fts5.html
https://www.sqlite.org/fts5.html

2 match_companies

match_companies Match Company Names against a Dictionary

Description

Runs a cascading matching pipeline: Exact -> Fuzzy (Zoomer) -> FTS5 -> Rarity. Matches found
in earlier steps are removed from subsequent steps.

Usage

match_companies(
queries,
dictionary,
query_col = "company_name",
dict_col = "company_name",
unique_id_col = "query_id",
dict_id_col = "orbis_id",
threshold_jw = 0.8,
threshold_zoomer = 0.4,
threshold_rarity = 1,
n_cores = 1

)

Arguments

queries Data frame. Must contain columns specified in query_col and unique_id_col.

dictionary Data frame. Must contain columns specified in dict_col and dict_id_col.

query_col String. Column name for company names in queries.

dict_col String. Column name for company names in dictionary.

unique_id_col String. ID column in queries.

dict_id_col String. ID column in dictionary.

threshold_jw Numeric (0-1). Minimum Jaro-Winkler similarity. Default 0.8.

threshold_zoomer

Numeric (0-1). Jaccard threshold for blocking. Default 0.4.

threshold_rarity

Numeric. Minimum score for rarity matching. Default 1.0.

n_cores Integer. Number of cores (reserved for future parallel implementation).

Value

A data.table containing query_id, dict_id, and match_type.

normalize_company_name 3

Examples

Create sample query data
queries <- data.frame(

query_id = 1:3,
company_name = c("BMW", "Siemens AG", "Deutsche Bank")

)

Create sample dictionary
dictionary <- data.frame(

orbis_id = c("D001", "D002", "D003"),
company_name = c("BMW AG", "Siemens Aktiengesellschaft", "Commerzbank AG")

)

Match companies
results <- match_companies(

queries = queries,
dictionary = dictionary,
query_col = "company_name",
dict_col = "company_name",
unique_id_col = "query_id",
dict_id_col = "orbis_id"

)

print(results)

normalize_company_name

Normalize Company Names

Description

Standardizes company names by lowercasing, removing legal suffixes, translating characters to
ASCII, and removing noise words.

Usage

normalize_company_name(x)

Arguments

x A character vector of company names.

Value

A character vector of normalized names.

4 validate_matches_llm

Examples

Normalize a single company name
normalize_company_name("BMW AG")
normalize_company_name("Siemens GmbH & Co. KG")

Normalize multiple names
companies <- c("Deutsche Bank AG", "VW Group", "BASF SE")
normalize_company_name(companies)

validate_matches_llm Validate Matches using LLM (Azure OpenAI)

Description

Sends doubtful matches (not "Perfect" or "Unmatched") to an LLM for verification. Supports re-
suming from interruptions via chunk files.

Usage

validate_matches_llm(
data,
query_name_col,
dict_name_col,
output_dir = tempdir(),
filename_stem = "match_validation",
batch_size = 20,
api_key = Sys.getenv("AZURE_API_KEY"),
endpoint = Sys.getenv("AZURE_ENDPOINT"),
deployment = Sys.getenv("AZURE_DEPLOYMENT")

)

Arguments

data Data frame. Must contain the columns specified by query_name_col and dict_name_col.

query_name_col String. Column containing the user’s query name (Employer).

dict_name_col String. Column containing the dictionary match name (Registry).

output_dir String. Directory to save temporary chunks and final results. Defaults to tempdir().

filename_stem String. Base name for output files.

batch_size Integer. Number of rows to process before saving a chunk.

api_key String. Azure API Key. Defaults to Sys.getenv("AZURE_API_KEY").

endpoint String. Azure Endpoint. Defaults to Sys.getenv("AZURE_ENDPOINT").

deployment String. Deployment name. Defaults to Sys.getenv("AZURE_DEPLOYMENT").

Value

A data frame with added LLM_decision and LLM_reason columns.

validate_matches_llm 5

Examples

Not run:
Sample matched data
matched_data <- data.frame(

employer_name = c("BMW", "Siemens"),
registry_name = c("BMW AG", "SAP SE"),
dict_id = c("D001", "D002"),
match_type = c("Fuzzy", "Fuzzy")

)

Validate using LLM (requires Azure credentials)
validated <- validate_matches_llm(

data = matched_data,
query_name_col = "employer_name",
dict_name_col = "registry_name"

)

print(validated)

End(Not run)

Index

match_companies, 2

normalize_company_name, 3

validate_matches_llm, 4

6

	match_companies
	normalize_company_name
	validate_matches_llm
	Index

