The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
To demonstrate the functionality of the fishtree
package and how it integrates well with the rest of the R phylogenetics ecosystem, this vignette will walk you through a simple comparative analysis.
A common hypothesis tested in comparative methods is whether habitat shifts drive rates of diversification in various groups. For example, Santini et al. (2013) tested, among other things, whether reef-associated pufferfishes enjoyed faster rates of speciation compared to their non-reef relatives.
First, load the fishtree
package and download the subset of the Fish Tree of Life corresponding to the taxon of interest. To make things more interesting we’ll work on the entire order (Tetraodontiformes) rather than the family in the 2013 study.
library(fishtree)
<- fishtree_phylogeny(rank = "Tetraodontiformes")
tree
plot(tree, show.tip.label = FALSE, no.margin = TRUE)
Next, we need to get habitat data and associate it with our phylogeny. The rfishbase
package (Boettiger et al. 2012) has a variety of convenient functions to access data recorded by the Fishbase editors. Load the rfishbase
package and retrieve the relevant data in the DemersPelag
field, which identifies whether a species is reef-associated or not, among other things.
library(rfishbase)
<- gsub("_", " ", tree$tip.label, fixed = TRUE)
tips
<- species(species_list = tips, fields = c("Species", "DemersPelag"))
fb_results <- fb_results[!is.na(fb_results$DemersPelag), ]
fb_results head(fb_results)
#> # A tibble: 6 x 2
#> Species DemersPelag
#> <chr> <chr>
#> 1 Carinotetraodon lorteti benthopelagic
#> 2 Carinotetraodon borneensis benthopelagic
#> 3 Carinotetraodon irrubesco benthopelagic
#> 4 Carinotetraodon salivator benthopelagic
#> 5 Carinotetraodon travancoricus demersal
#> 6 Carinotetraodon imitator benthopelagic
Note that we had to replace the underscores in the tip labels with spaces. This is a common source of errors, so if your analyses don’t seem to work correctly always check whether the functions you’re using expect underscores or spaces.
There’s a lot of data in the DemersPelag
field, but we only want to know if the species is reef-associated or not.
<- data.frame(tip = gsub(" ", "_", fb_results$Species),
reef is_reef = as.numeric(fb_results$DemersPelag == "reef-associated"))
head(reef)
#> tip is_reef
#> 1 Carinotetraodon_lorteti 0
#> 2 Carinotetraodon_borneensis 0
#> 3 Carinotetraodon_irrubesco 0
#> 4 Carinotetraodon_salivator 0
#> 5 Carinotetraodon_travancoricus 0
#> 6 Carinotetraodon_imitator 0
We’ve also converted the tip labels back to underscores, since we need to ensure that the tip labels on our phylogeny match the labels on our trait data. The geiger
package (Pennell et al. 2014) provides a convenient function that will perform this check. The name.check
function expects row names on our data object, so we will do that as well.
library(geiger)
rownames(reef) <- reef$tip
<- geiger::name.check(tree, reef)
nc
nc#> $tree_not_data
#> [1] "Lagocephalus_lagocephalus_lagocephalus"
#> [2] "Monotrete_cochinchinensis"
#> [3] "Monotrete_leiurus"
#> [4] "Paramonacanthus_filicauda"
#> [5] "Rhinesomus_triqueter"
#> [6] "Sphoeroides_cheesemanii"
#> [7] "Takifugu_fasciatus"
#> [8] "Tetraodon_abei"
#> [9] "Tetraodon_baileyi"
#> [10] "Tetraodon_biocellatus"
#> [11] "Tetraodon_cambodgiensis"
#> [12] "Tetraodon_cutcutia"
#> [13] "Tetraodon_erythrotaenia"
#> [14] "Tetraodon_fluviatilis"
#> [15] "Tetraodon_nigroviridis"
#> [16] "Tetraodon_palembangensis"
#> [17] "Tetraodon_suvattii"
#> [18] "Tetraodon_turgidus"
#> [19] "Tetrosomus_fornasini"
#>
#> $data_not_tree
#> character(0)
We’ve identified a mismatch between the tree and the data. We’ll exclude the tips lacking trait data using drop.tip
:
library(ape)
<- drop.tip(tree, nc$tree_not_data) tree
If we also had data that was not in the tree, we could exclude that using the following command, but it isn’t necessary in this case:
<- reef[!rownames(reef) %in% nc$data_not_tree, ] reef
Confirm that we have the same number of observations in the tree and the data:
Ntip(tree) == nrow(reef)
#> [1] TRUE
There are several other data sources available in the fishtree
package, including speciation rates computed via the DR method (Jetz et al. 2012). Retrieve speciation rate data:
<- fishtree_tip_rates(rank = "Tetraodontiformes")
rates head(rates)
#> species lambda.tv mu.tv lambda.tc mu.tc
#> 2 Abalistes stellaris 0.08859469 0.01282721 0.09181900 0.02239813
#> 3 Abalistes stellatus 0.08859469 0.01282721 0.09181900 0.02239813
#> 34 Acanthaluteres spilomelanurus 0.10180976 0.01614045 0.16054060 0.06301037
#> 35 Acanthaluteres vittiger 0.10180976 0.01614045 0.16054060 0.06301037
#> 131 Acanthostracion polygonius 0.08549937 0.01178475 0.07697343 0.01359198
#> 132 Acanthostracion quadricornis 0.08549937 0.01178475 0.07697343 0.01359198
#> dr
#> 2 0.11678851
#> 3 0.11909205
#> 34 0.28175984
#> 35 0.28406568
#> 131 0.07606301
#> 132 0.07213440
We’re interested in just the dr
column, so extract that and convert spaces to underscores again. Then merge the habitat data with the speciation rate data.
<- data.frame(tip = gsub(" ", "_", rates$species), dr = rates$dr)
rates rownames(rates) <- rates$tip
<- merge(reef, rates) merged
As a quick check our data, let’s plot histograms of the DR rate of reef and non-reef species:
<- seq(min(merged$dr), max(merged$dr), length.out = 30)
breaks hist(subset(merged, is_reef == 1)$dr, col = "orange", density = 20, angle = 135,
breaks = breaks)
hist(subset(merged, is_reef == 0)$dr, col = "purple", density = 20, angle = 45,
breaks = breaks, add = TRUE)
It seems like for the most part, the Tetraodontiformes have a low speciation rate, except for a subset of non-reef species that have a faster rate.
Of course, with any comparative method, it’s critical to consider the historical relationships between the species you’re examining. The following snippet of code is quite complex, but demonstrates how to draw rates onto a phylogeny using colored bars next to each tip in question.
# Plot tree and extract plotting data
plot(tree, show.tip.label = FALSE, no.margin = TRUE)
<- get("last_plot.phylo", .PlotPhyloEnv)
obj
# Generate a color ramp
<- grDevices::colorRamp(c("black", "red"), bias = 10)
ramp <- match(rates$tip, tree$tip.label)
tiporder <- rates$dr / max(rates$dr, na.rm = TRUE)
scaled_rates <- apply(ramp(scaled_rates), 1, function(x) do.call(rgb, as.list(x / 255)))
tipcols
# Place colored bars
for (ii in 1:length(tiporder)) {
<- tiporder[ii]
tip lines(x = c(obj$xx[tip] + 0.5, obj$xx[tip] * 1.5 + 0.5 + scaled_rates[ii]),
y = rep(obj$yy[tip], 2),
col = tipcols[ii])
}
Let’s perform a more quantitative analysis using using hisse
. We’ll test 4 models: a BiSSE-like model, a BiSSE-like null model, a hisse model, and the hisse 2 state null model.
library(hisse)
#> Loading required package: deSolve
#> Loading required package: GenSA
#> Loading required package: subplex
#> Loading required package: nloptr
The hisse
package parameterizes things differently from diversitree
(where BiSSE lives), so we aren’t able to exactly replicate the analyses in the Santini paper. Instead we’ll settle by ensuring that the epsilon parameter, \(\epsilon = \frac{\mu}{\lambda}\) is constrained to be equal for both reef and non-reef taxa. We’ll also constrain transition rates to be equal, since it can be difficult to estimate those.
Note that to ensure this vignette can be run in a reasonable amount of time, we set sann = FALSE
to disable the simulated annealing procedure in hisse
. However, for any actual analysis this option should be turned on for maximum accuracy and confidence in your final results.
First, we’ll construct and run the BiSSE model and the BiSSE null model:
<- TransMatMakerHiSSE()
trans.rates.bisse
<- hisse(tree, reef,
pp.bisse.full hidden.states = FALSE, sann = FALSE,
turnover = c(1, 2), eps = c(1, 1),
trans.rate = trans.rates.bisse)
#> Warning in hisse(tree, reef, hidden.states = FALSE, sann = FALSE, turnover =
#> c(1, : You have chosen to rely on the internal starting points that generally
#> work but does not guarantee finding the MLE.
#> Initializing...
#> Finished. Beginning bounded subplex routine...
#> Finished. Summarizing results...
<- hisse(tree, reef,
pp.bisse.null hidden.states = FALSE, sann = FALSE,
turnover = c(1, 1), eps = c(1, 1),
trans.rate = trans.rates.bisse)
#> Warning in hisse(tree, reef, hidden.states = FALSE, sann = FALSE, turnover =
#> c(1, : You have chosen to rely on the internal starting points that generally
#> work but does not guarantee finding the MLE.
#> Initializing...
#> Finished. Beginning bounded subplex routine...
#> Finished. Summarizing results...
Next, we’ll run the full hisse model, save for the constrained transition rates and epsilon.
<- TransMatMakerHiSSE(hidden.traits = 1)
trans.rates.hisse <- ParEqual(trans.rates.hisse, c(1, 2, 1, 3, 1, 4, 1, 5))
trans.rates.hisse
<- hisse(tree, reef,
pp.hisse.full hidden.states = TRUE, sann = FALSE,
turnover = c(1, 2, 3, 4), eps = c(1, 1, 1, 1),
trans.rate = trans.rates.hisse)
#> Warning in hisse(tree, reef, hidden.states = TRUE, sann = FALSE, turnover =
#> c(1, : You have chosen to rely on the internal starting points that generally
#> work but does not guarantee finding the MLE.
#> Initializing...
#> Finished. Beginning bounded subplex routine...
#> Finished. Summarizing results...
Finally, we’ll build the 2 state character independent diversification model, sometimes called CID-2. We’ll use this as our null model by forcing the visible states (reef or non-reef) to have the same net turnover rates, while permitting the hidden states to vary freely.
<- hisse(tree, reef,
pp.hisse.null2 hidden.states = TRUE, sann = FALSE,
turnover = c(1, 1, 2, 2), eps = c(1, 1, 1, 1),
trans.rate = trans.rates.hisse)
#> Warning in hisse(tree, reef, hidden.states = TRUE, sann = FALSE, turnover =
#> c(1, : You have chosen to rely on the internal starting points that generally
#> work but does not guarantee finding the MLE.
#> Initializing...
#> Finished. Beginning bounded subplex routine...
#> Finished. Summarizing results...
We can combine all of our results into a single table for easy comparison.
<- list(pp.bisse.full, pp.bisse.null, pp.hisse.null2, pp.hisse.full)
results <- sapply(results, `[[`, "AICc")
aicc <- sapply(results, `[[`, "loglik")
lnl
data.frame(model = c("bisse_full", "bisse_null", "hisse_cid2", "hisse_full"), aicc, lnl)
#> model aicc lnl
#> 1 bisse_full 1928.654 -959.1933
#> 2 bisse_null 1926.650 -959.2364
#> 3 hisse_cid2 1914.993 -953.4075
#> 4 hisse_full 1919.024 -953.3236
Summarizing the results on the basis of AICc suggests that the best supported model is a null model, where habitat has no effect on speciation rate.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.