The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Starting values used in fitdistrplus

Marie Laure Delignette Muller, Christophe Dutang

2024-07-11

We denote by the raw empirical moment by \[ m_j = \frac1n \sum_{i=1}^n x_i^j, \] by the centered empirical moment by \[ \mu_j = \frac1n \sum_{i=1}^n (x_i^j-m_1). \] Starting values are computed in R/util-startarg.R. We give below the starting values for discrete and continuous distributions and refer to the bibliograhy sections for details.

1 Discrete distributions

1.1 Base R distribution

1.1.1 Geometric distribution

The MME is used \(\hat p=1/(1+m_1)\).

1.1.2 Negative binomial distribution

The MME is used \(\hat n = m_1^2/(\mu_2-m_1)\).

1.1.3 Poisson distribution

Both the MME and the MLE is \(\hat \lambda = m_1\).

1.1.4 Binomial distribution

The MME is used \[ Var[X]/E[X] = 1-p \Rightarrow \hat p = 1- \mu_2/m_1. \] the size parameter is \[ \hat n = \lceil\max(\max_i x_i, m_1/\hat p)\rceil. \]

1.2 logarithmic distribution

The expectation simplifies for small values of \(p\) \[ E[X] = -\frac{1}{\log(1-p)}\frac{p}{1-p} \approx -\frac{1}{-p}\frac{p}{1-p} =\frac{1}{1-p}. \] So the initial estimate is \[ \hat p = 1-1/m_1. \]

1.3 Zero truncated distributions

This distribution are the distribution of \(X\vert X>0\) when \(X\) follows a particular discrete distributions. Hence the initial estimate are the one used for base R on sample \(x-1\).

1.4 Zero modified distributions

The MLE of the probability parameter is the empirical mass at 0 \(\hat p_0=\frac1n \sum_i 1_{x_i=0}\). For other estimators we use the classical estimator with probability parameter \(1-\hat p_0\).

1.5 Poisson inverse Gaussian distribution

The first two moments are \[ E[X]=\mu, Var[X] = \mu+\phi\mu^3. \] So the initial estimate are \[ \hat\mu=m_1, \hat\phi = (\mu_2 - m_1)/m_1^3. \]

2 Continuous distributions

2.1 Normal distribution

The MLE is the MME so we use the empirical mean and variance.

2.2 Lognormal distribution

The log sample follows a normal distribution, so same as normal on the log sample.

2.3 Beta distribution (of the first kind)

The density function for a beta \(\mathcal Be(a,b)\) is \[ f_X(x) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} x^{a-1}(1-x)^{b-1}. \] The initial estimate is the MME \[\begin{equation} \hat a = m_1 \delta, \hat b = (1-m_1)\delta, \delta = \frac{m_1(1-m_1)}{\mu_2}-1, \tag{2.1} \end{equation}\]

2.4 Other continuous distribution in actuar

2.4.1 Log-gamma

Use the gamma initial values on the sample \(\log(x)\)

2.4.2 Gumbel

The distribution function is \[ F(x) = \exp(-\exp(-\frac{x-\alpha}{\theta})). \] Let \(q_1\) and \(q_3\) the first and the third quartiles. \[ \left\{\begin{array} -\theta\log(-\log(p_1)) = q_1-\alpha \\ -\theta\log(-\log(p_3)) = q_3-\alpha \end{array}\right. \Leftrightarrow \left\{\begin{array} -\theta\log(-\log(p_1))+\theta\log(-\log(p_3)) = q_1-q_3 \\ \alpha= \theta\log(-\log(p_3)) + q_3 \end{array}\right. \Leftrightarrow \left\{\begin{array} \theta= \frac{q_1-q_3}{\log(-\log(p_3)) - \log(-\log(p_1))} \\ \alpha= \theta\log(-\log(p_3)) + q_3 \end{array}\right.. \] Using the median for the location parameter \(\alpha\) yields to initial estimate \[ \hat\theta= \frac{q_1-q_3}{\log(\log(4/3)) - \log(\log(4))}, \hat\alpha = \hat\theta\log(\log(2)) + q_2. \]

2.4.3 Inverse Gaussian distribution

The moments of this distribution are \[ E[X] = \mu, Var[X] = \mu^3\phi. \] Hence the initial estimate are \(\hat\mu=m_1\), \(\hat\phi=\mu_2/m_1^3\).

2.4.4 Generalized beta

This is the distribution of \(\theta X^{1/\tau}\) when \(X\) is beta distributed \(\mathcal Be(a,b)\) The moments are \[ E[X] = \theta \beta(a+1/\tau, b)/\beta(a,b) = \theta \frac{\Gamma(a+1/\tau)}{\Gamma(a)}\frac{\Gamma(a+b)}{\Gamma(a+b+1/\tau)}, \] \[ E[X^2] = \theta^2 \frac{\Gamma(a+2/\tau)}{\Gamma(a)}\frac{\Gamma(a+b)}{\Gamma(a+b+2/\tau)}. \] Hence for large value of \(\tau\), we have \[ E[X^2] /E[X] = \theta \frac{\Gamma(a+2/\tau)}{\Gamma(a+b+2/\tau)} \frac{\Gamma(a+b+1/\tau)}{\Gamma(a+1/\tau)} \approx \theta. \] Note that the MLE of \(\theta\) is the maximum We use \[ \hat\tau=3, \hat\theta = \frac{m_2}{m_1}\max_i x_i 1_{m_2>m_1} +\frac{m_1}{m_2}\max_i x_i 1_{m_2\geq m_1}. \] then we use beta initial estimate on sample \((\frac{x_i}{\hat\theta})^{\hat\tau}\).

2.5 Feller-Pareto family

The Feller-Pareto distribution is the distribution \(X=\mu+\theta(1/B-1)^{1/\gamma}\) when \(B\) follows a beta distribution with shape parameters \(\alpha\) and \(\tau\). See details at https://doi.org/10.18637/jss.v103.i06 Hence let \(Y = (X-\mu)/\theta\), we have \[ \frac{Y}{1+Y} = \frac{X-\mu}{\theta+X-\mu} = (1-B)^{1/\gamma}. \] For \(\gamma\) close to 1, \(\frac{Y}{1+Y}\) is approximately beta distributed \(\tau\) and \(\alpha\).

The log-likelihood is \[\begin{equation} \mathcal L(\mu, \theta, \alpha, \gamma, \tau) = (\tau \gamma - 1) \sum_{i} \log(\frac{x_i-\mu}\theta) - (\alpha+\tau)\sum_i \log(1+(\frac{x_i-\mu}\theta)^\gamma) + n\log(\gamma) - n\log(\theta) -n \log(\beta(\alpha,\tau)). \tag{2.2}. \end{equation}\] The MLE of \(\mu\) is the minimum.

The gradient with respect to \(\theta, \alpha, \gamma, \tau\) is \[\begin{equation} \nabla \mathcal L(\mu, \theta, \alpha, \gamma, \tau) = \begin{pmatrix} -(\tau \gamma - 1) \sum_{i} \frac{x_i}{\theta(x_i-\mu)} + (\alpha+\tau)\sum_i \frac{x_i\gamma(\frac{x_i-\mu}\theta)^{\gamma-1}}{\theta^2(1+(\frac{x_i-\mu}\theta)^\gamma)} - n/\theta \\ - \sum_i \log(1+(\frac{x_i-\mu}\theta)^\gamma) -n(\psi(\tau) - \psi(\alpha+\tau)) \\ (\tau - 1) \sum_{i} \log(\frac{x_i-\mu}\theta) - (\alpha+\tau)\sum_i \frac{(\frac{x_i-\mu}\theta)^\gamma}{ 1+(\frac{x_i-\mu}\theta)^\gamma}\log(\frac{x_i-\mu}\theta) + n/\gamma \\ (\gamma - 1) \sum_{i} \log(\frac{x_i-\mu}\theta) - \sum_i \log(1+(\frac{x_i-\mu}\theta)^\gamma) -n (\psi(\tau) - \psi(\alpha+\tau)) \end{pmatrix}. \tag{2.3} \end{equation}\] Cancelling the first component of score for \(\gamma=\alpha=2\), we get \[ -(2\tau - 1) \sum_{i} \frac{x_i}{\theta(x_i-\mu)} + (2+\tau)\sum_i \frac{x_i 2(x_i-\mu)}{\theta^3(1+(\frac{x_i-\mu}\theta)^2)} = \frac{n}{\theta} \Leftrightarrow -(2\tau - 1)\theta^2\frac1n \sum_{i} \frac{x_i}{x_i-\mu} + (2+\tau) \frac1n\sum_i \frac{x_i 2(x_i-\mu)}{(1+(\frac{x_i-\mu}\theta)^2)} = \theta^2 \] \[ \Leftrightarrow (2+\tau) \frac1n\sum_i \frac{x_i 2(x_i-\mu)}{1+(\frac{x_i-\mu}\theta)^2} = (2\tau - 1)\theta^2\left(\frac1n \sum_{i} \frac{x_i}{x_i-\mu} -1\right) \Leftrightarrow \sqrt{ \frac{(2+\tau) \frac1n\sum_i \frac{x_i 2(x_i-\mu)}{1+(\frac{x_i-\mu}\theta)^2} }{(2\tau - 1)\left(\frac1n \sum_{i} \frac{x_i}{x_i-\mu} -1\right)} } = \theta. \] Neglecting unknown value of \(\tau\) and the denominator in \(\theta\), we get with \(\hat\mu\) set with ((2.16)) \[\begin{equation} \hat\theta = \sqrt{ \frac{ \frac1n\sum_i \frac{x_i 2(x_i-\hat\mu)}{1+(x_i-\hat\mu)^2} }{\left(\frac1n \sum_{i} \frac{x_i}{x_i-\hat\mu} -1\right)} }. \tag{2.4} \end{equation}\] Initial value of \(\tau,\alpha\) are obtained on the sample \((z_i)_i\) \[ z_i = y_i/(1+y_i), y_i = (x_i - \hat\mu)/\hat\theta, \] with initial values of a beta distribution which is based on MME ((2.1)).

Cancelling the last component of the gradient leads to \[ (\gamma - 1) \frac1n\sum_{i} \log(\frac{x_i-\mu}\theta) - \frac1n\sum_i \log(1+(\frac{x_i-\mu}\theta)^\gamma) = \psi(\tau) - \psi(\alpha+\tau) \Leftrightarrow (\gamma - 1) \frac1n\sum_{i} \log(\frac{x_i-\mu}\theta) = \psi(\tau) - \psi(\alpha+\tau) +\frac1n\sum_i \log(1+(\frac{x_i-\mu}\theta)^\gamma) . \] Neglecting the value \(\gamma\) on the right-hand side we obtain \[\begin{equation} \hat\gamma = 1+ \frac{ \psi(\tau) - \psi(\alpha+\tau) +\frac1n\sum_i \log(1+(\frac{x_i-\mu}\theta)) }{ \frac1n\sum_{i} \log(\frac{x_i-\mu}\theta) }. \tag{2.5} \end{equation}\]

2.5.1 Transformed beta

This is the Feller-Pareto with \(\mu=0\). So the first component of (2.3) simplifies to with \(\gamma=\alpha=2\) \[ -(2\tau - 1) \sum_{i} \frac{x_i}{\theta(x_i)} + (2+\tau)\sum_i \frac{2x_i^2}{\theta^3(1+(\frac{x_i}\theta)^2)} = \frac{n}{\theta} \Leftrightarrow -(2\tau - 1) \theta^2 + (2+\tau)\frac1n\sum_i \frac{2x_i^2}{1+(\frac{x_i}\theta)^2} = \theta^2 \] \[ \theta^2=\frac{2+\tau}{2\tau}\frac1n\sum_i \frac{2x_i^2}{1+(\frac{x_i}\theta)^2}. \] Neglecting unknown value of \(\tau\) in the denominator in \(\theta\), we get \[\begin{equation} \hat\theta = \sqrt{ \frac1n\sum_i \frac{2x_i^2}{1+x_i^2} }. \tag{2.6} \end{equation}\] Initial value of \(\tau,\alpha\) are obtained on the sample \((z_i)_i\) \[ z_i = y_i/(1+y_i), y_i = x_i/\hat\theta, \] with initial values of a beta distribution which is based on MME ((2.1)). Similar to Feller-Pareto, we set \[\begin{equation} \hat\gamma = 1+ \frac{ \psi(\tau) - \psi(\alpha+\tau) +\frac1n\sum_i \log(1+\frac{x_i}\theta) }{ \frac1n\sum_{i} \log(\frac{x_i}\theta) }. \tag{2.5} \end{equation}\]

2.5.2 Generalized Pareto

This is the Feller-Pareto with \(\mu=0\) \(\gamma=1\). So the first component of (2.3) simplifies to with \(\gamma=2\) \[ -(\tau - 1) \frac{n}{\theta} + (2+\tau)\sum_i \frac{x_i}{\theta^2(1+\frac{x_i}\theta} = n/\theta \Leftrightarrow -(\tau - 1) \theta + (2+\tau)\frac1n\sum_i \frac{x_i}{(1+\frac{x_i}\theta} = \theta. \] Neglecting unknown value of \(\tau\) leads to \[\begin{equation} \hat\theta = \frac1n\sum_i \frac{x_i}{1+x_i} \tag{2.7} \end{equation}\]

Initial value of \(\tau,\alpha\) are obtained on the sample \((z_i)_i\) \[ z_i = y_i/(1+y_i), y_i = x_i/\hat\theta, \] with initial values of a beta distribution which is based on MME ((2.1)).

2.5.3 Burr

Burr is a Feller-Pareto distribution with \(\mu=0\), \(\tau=1\).

The survival function is \[ 1-F(x) = (1+(x/\theta)^\gamma)^{-\alpha}. \] Using the median \(q_2\), we have \[ \log(1/2) = - \alpha \log(1+(q_2/\theta)^\gamma). \] The initial value is \[\begin{equation} \alpha = \frac{\log(2)}{\log(1+(q_2/\theta)^\gamma)}, \tag{2.8} \end{equation}\]

So the first component of (2.3) simplifies to with \(\gamma=\alpha=2\), \(\tau=1\), \(\mu=0\). \[ - n/\theta + 3\sum_i \frac{2x_i(\frac{x_i}\theta)}{\theta^2(1+(\frac{x_i}\theta)^2)} = n/\theta \Leftrightarrow \theta^2\frac1n\sum_i \frac{2x_i(\frac{x_i}\theta)}{(1+(\frac{x_i}\theta)^2)} = 2/3. \] Neglecting unknown value in the denominator in \(\theta\), we get \[\begin{equation} \hat\theta = \sqrt{ \frac{2}{3 \frac1n\sum_i \frac{2x_i^2}{1+(x_i)^2} } }. \tag{2.6} \end{equation}\] We use for \(\hat\gamma\) (2.5) with \(\tau=1\) and \(\alpha=2\) and previous \(\hat\theta\).

2.5.4 Loglogistic

Loglogistic is a Feller-Pareto distribution with \(\mu=0\), \(\tau=1\), \(\alpha=1\). The survival function is \[ 1-F(x) = (1+(x/\theta)^\gamma)^{-1}. \] So \[ \frac1{1-F(x)}-1 = (x/\theta)^\gamma \Leftrightarrow \log(\frac{F(x)}{1-F(x)}) = \gamma\log(x/\theta). \] Let \(q_1\) and \(q_3\) be the first and the third quartile. \[ \log(\frac{1/3}{2/3})= \gamma\log(q_1/\theta), \log(\frac{2/3}{1/3})= \gamma\log(q_3/\theta) \Leftrightarrow -\log(2)= \gamma\log(q_1/\theta), \log(2)= \gamma\log(q_3/\theta). \] The difference of previous equations simplifies to \[ \hat\gamma=\frac{2\log(2)}{\log(q_3/q_1)}. \] The sum of previous equations \[ 0 = \gamma\log(q_1)+\gamma\log(q_3) - 2\gamma\log(\theta). \] \[\begin{equation} \hat\theta = \frac12 e^{\log(q_1q_3)}. \tag{2.9} \end{equation}\]

2.5.5 Paralogistic

Paralogistic is a Feller-Pareto distribution with \(\mu=0\), \(\tau=1\), \(\alpha=\gamma\). The survival function is \[ 1-F(x) = (1+(x/\theta)^\alpha)^{-\alpha}. \] So \[ \log(1-F(x)) = -\alpha \log(1+(x/\theta)^\alpha). \] The log-likelihood is \[\begin{equation} \mathcal L(\theta, \alpha) = ( \alpha - 1) \sum_{i} \log(\frac{x_i}\theta) - (\alpha+1)\sum_i \log(1+(\frac{x_i}\theta)^\alpha) + 2n\log(\alpha) - n\log(\theta). \tag{2.10} \end{equation}\] The gradient with respect to \(\theta\), \(\alpha\) is \[ \begin{pmatrix} ( \alpha - 1)\frac{-n}{\theta} - (\alpha+1)\sum_i \frac{-x_i\alpha(x_i/\theta)^{\alpha-1}}{1+(\frac{x_i}\theta)^\alpha} - n/\theta \\ \sum_{i} \log(\frac{ \frac{x_i}\theta}{1+(\frac{x_i}\theta)^\alpha }) - (\alpha+1)\sum_i \frac{(\frac{x_i}\theta)^\alpha \log(x_i/\theta)}{1+(\frac{x_i}\theta)^\alpha} + 2n/\alpha \\ \end{pmatrix}. \] The first component cancels when \[ - (\alpha+1)\sum_i \frac{-x_i\alpha(x_i/\theta)^{\alpha-1}}{1+(\frac{x_i}\theta)^\alpha} = \alpha n/\theta \Leftrightarrow (\alpha+1)\frac1n\sum_i \frac{ (x_i)^{\alpha+1}}{1+(\frac{x_i}\theta)^\alpha} = \theta^\alpha. \] The second component cancels when \[ \frac1n\sum_{i} \log(\frac{ \frac{x_i}\theta}{1+(\frac{x_i}\theta)^\alpha }) = -2/\alpha +(\alpha+1)\frac1n\sum_i \frac{(\frac{x_i}\theta)^\alpha \log(x_i/\theta)}{1+(\frac{x_i}\theta)^\alpha}. \] Choosing \(\theta=1\), \(\alpha=2\) in sums leads to \[ \frac1n\sum_{i} \log(\frac{ \frac{x_i}\theta}{1+x_i^2 }) - \frac1n\sum_i \frac{x_i^2\log(x_i)}{1+x_i^2} = -2/\alpha +(\alpha)\frac1n\sum_i \frac{x_i^2\log(x_i)}{1+x_i^2}. \] Initial estimators are \[\begin{equation} \hat\alpha = \frac{ \frac1n\sum_{i} \log(\frac{ x_i}{1+x_i^2 }) - \frac1n\sum_i \frac{x_i^2\log(x_i)}{1+x_i^2} }{ \frac1n\sum_i \frac{x_i^2\log(x_i)}{1+x_i^2} - 2 }, \tag{2.11} \end{equation}\] \[\begin{equation} \hat\theta = (\hat\alpha+1)\frac1n\sum_i \frac{ (x_i)^{\hat\alpha+1}}{1+(x_i)^{\hat\alpha}}. \tag{2.12} \end{equation}\]

2.5.6 Inverse Burr

Use Burr estimate on the sample \(1/x\)

2.5.7 Inverse paralogistic

Use paralogistic estimate on the sample \(1/x\)

2.5.8 Inverse pareto

Use pareto estimate on the sample \(1/x\)

2.5.9 Pareto IV

The survival function is \[ 1-F(x) = \left(1+ \left(\frac{x-\mu}{\theta}\right)^{\gamma} \right)^{-\alpha}, \] see ?Pareto4 in actuar.

The first and third quartiles \(q_1\) and \(q_3\) verify \[ ((\frac34)^{-1/\alpha}-1)^{1/\gamma} = \frac{q_1-\mu}{\theta}, ((\frac14)^{-1/\alpha}-1)^{1/\gamma} = \frac{q_3-\mu}{\theta}. \] Hence we get two useful relations \[\begin{equation} \gamma = \frac{ \log\left( \frac{ (\frac43)^{1/\alpha}-1 }{ (4)^{1/\alpha}-1 } \right) }{ \log\left(\frac{q_1-\mu}{q_3-\mu}\right) }, \tag{2.13} \end{equation}\] \[\begin{equation} \theta = \frac{q_1- q_3 }{ ((\frac43)^{1/\alpha}-1)^{1/\gamma} - ((4)^{1/\alpha}-1)^{1/\gamma} }. \tag{2.14} \end{equation}\]

The log-likelihood of a Pareto 4 sample (see Equation (5.2.94) of Arnold (2015) updated with Goulet et al. notation) is \[ \mathcal L(\mu,\theta,\gamma,\alpha) = (\gamma -1) \sum_i \log(\frac{x_i-\mu}{\theta}) -(\alpha+1)\sum_i \log(1+ (\frac{x_i-\mu}{\theta})^{\gamma}) +n\log(\gamma) -n\log(\theta)+n\log(\alpha). \] Cancelling the derivate of \(\mathcal L(\mu,\theta,\gamma,\alpha)\) with respect to \(\alpha\) leads to \[\begin{equation} \alpha =n/\sum_i \log(1+ (\frac{x_i-\mu}{\theta})^{\gamma}). \tag{2.15} \end{equation}\]

The MLE of the threshold parameter \(\mu\) is the minimum. So the initial estimate is slightly under the minimum in order that all observations are strictly above it \[\begin{equation} \hat\mu = \left\{ \begin{array}{ll} (1-\epsilon) \min_i x_i & \text{if } \min_i x_i <0 \\ (1+\epsilon)\min_i x_i & \text{if } \min_i x_i \geq 0 \\ \end{array} \right. . \tag{2.16} \end{equation}\] where \(\epsilon=0.05\).

Initial parameter estimation is \(\hat\mu\), \(\alpha^\star = 2\) , \(\hat\gamma\) from (2.13) with \(\alpha^\star\), \(\hat\theta\) from (2.14) with \(\alpha^\star\) and \(\hat\gamma\), \(\hat\alpha\) from (2.15) with \(\hat\mu\), \(\hat\theta\) and \(\hat\gamma\).

2.5.10 Pareto III

Pareto III corresponds to Pareto IV with \(\alpha=1\). \[\begin{equation} \gamma = \frac{ \log\left( \frac{ \frac43-1 }{ 4-1 } \right) }{ \log\left(\frac{q_1-\mu}{q_3-\mu}\right) }, \label{eq:pareto3:gamma:relation} \end{equation}\]

\[\begin{equation} \theta = \frac{ (\frac13)^{1/\gamma} - (3)^{1/\gamma} }{q_1- q_3 }. \label{eq:pareto3:theta:relation} \end{equation}\]

Initial parameter estimation is \(\hat\mu\), \(\hat\gamma\) from , \(\hat\theta\) from with \(\hat\gamma\).

2.5.11 Pareto II

Pareto II corresponds to Pareto IV with \(\gamma=1\).

\[\begin{equation} \theta = \frac{ (\frac43)^{1/\alpha} - 4^{1/\alpha} }{q_1- q_3 }. \label{eq:pareto2:theta:relation} \end{equation}\]

Initial parameter estimation is \(\hat\mu\), \(\alpha^\star = 2\) , \(\hat\theta\) from with \(\alpha^\star\) and \(\gamma=1\), \(\hat\alpha\) from with \(\hat\mu\), \(\hat\theta\) and \(\gamma=1\),

2.5.12 Pareto I

Pareto I corresponds to Pareto IV with \(\gamma=1\), \(\mu=\theta\).

The MLE is \[\begin{equation} \hat\mu = \min_i X_i, \hat\alpha = \left(\frac1n \sum_{i=1}^n \log(X_i/\hat\mu) \right)^{-1}. \label{eq:pareto1:alpha:mu:relation} \end{equation}\]

This can be rewritten with the geometric mean of the sample \(G_n = (\prod_{i=1}^n X_i)^{1/n}\) as \[ \hat\alpha = \log(G_n/\hat\mu). \]

Initial parameter estimation is \(\hat\mu\), \(\hat\alpha\) from .

2.5.13 Pareto

Pareto corresponds to Pareto IV with \(\gamma=1\), \(\mu=0\). \[\begin{equation} \theta = \frac{ (\frac43)^{1/\alpha} - 4^{1/\alpha} }{q_1- q_3 }. \label{eq:pareto:theta:relation} \end{equation}\]

Initial parameter estimation is \[ \alpha^\star = \max(2, 2(m_2-m_1^2)/(m_2-2m_1^2)), \] with \(m_i\) are empirical raw moment of order \(i\), \(\hat\theta\) from with \(\alpha^\star\) and \(\gamma=1\), \(\hat\alpha\) from with \(\mu=0\), \(\hat\theta\) and \(\gamma=1\).

2.6 Transformed gamma family

2.6.1 Transformed gamma distribution

The log-likelihood is given by \[ \mathcal L(\alpha,\tau,\theta) = n\log(\tau) + \alpha\tau\sum_i \log(x_i/\theta) -\sum_i (x_i/\theta)^\tau - \sum_i\log(x_i) - n\log(Gamma(\alpha)). \] The gradient with respect to \(\alpha,\tau,\theta\) is given by \[ \begin{pmatrix} \tau- n\psi(\alpha)) \\ n/\tau + \alpha\sum_i \log(x_i/\theta) -\sum_i (x_i/\theta)^{\tau} \log(x_i/\theta) \\ -\alpha\tau /\theta +\sum_i \tau \frac{x_i}{\theta^2}(x_i/\theta)^{\tau-1} \end{pmatrix}. \] We compute moment-estimator as in gamma \[ \hat\alpha = m_2^2/\mu_2, \hat\theta= \mu_2/m_1. \] Then cancelling the first component of the gradient we set \[ \hat\tau = \frac{\psi(\hat\alpha)}{\frac1n\sum_i \log(x_i/\hat\theta) }. \]

2.6.2 gamma distribution

Transformed gamma with \(\tau=1\)

We compute moment-estimator as in gamma \[ \hat\alpha = m_2^2/\mu_2, \hat\theta= \mu_2/m_1. \]

2.6.3 Weibull distribution

Transformed gamma with \(\alpha=1\)

Let \(\tilde m=\frac1n\sum_i \log(x_i)\) and \(\tilde v=\frac1n\sum_i (\log(x_i) - \tilde m)^2\). We use an approximate MME \[ \hat\tau = 1.2/sqrt(\tilde v), \hat\theta = exp(\tilde m + 0.572/\hat \tau). \] Alternatively, we can use the distribution function \[ F(x) = 1 - e^{-(x/\sigma)^\tau} \Rightarrow \log(-\log(1-F(x))) = \tau\log(x) - \tau\log(\theta), \] Hence the QME for Weibull is \[ \tilde\tau = \frac{ \log(-\log(1-p_1)) - \log(-\log(1-p_2)) }{ \log(x_1) - \log(x_2) }, \tilde\tau = x_3/(-\log(1-p_3))^{1/\tilde\tau} \] with \(p_1=1/4\), \(p_2=3/4\), \(p_3=1/2\), \(x_i\) corresponding empirical quantiles.

Initial parameters are \(\tilde\tau\) and \(\tilde\theta\) unless the empirical quantiles \(x_1=x_2\), in that case we use \(\hat\tau\), \(\hat\theta\).

2.6.4 Exponential distribution

The MLE is the MME \(\hat\lambda = 1/m_1.\)

2.7 Inverse transformed gamma family

2.7.1 Inverse transformed gamma distribution

Same as transformed gamma distribution with \((1/x_i)_i\).

2.7.2 Inverse gamma distribution

We compute moment-estimator as \[ \hat\alpha = (2m_2-m_1^2)/(m_2-m_1^2), \hat\theta= m_1m_2/(m_2-m_1^2). \]

2.7.3 Inverse Weibull distribution

We use the QME.

2.7.4 Inverse exponential

Same as transformed gamma distribution with \((1/x_i)_i\).

3 Bibliography

3.1 General books

3.2 Books dedicated to a distribution family

3.3 Books with applications

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.