The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette is a workflow template including import, conversion to a standard format and highlighting inter-software proteinGroup denotation differences with flowTraceR.
library(flowTraceR)
library(magrittr)
library(dplyr)
library(tidyr)
library(stringr)
library(tibble)
library(ggplot2)
library(data.table)
library(kableExtra)
Importing the output files from each software can be easily performed with data.table::fread()
.
<- data.table::fread("DIRECTORY/dia-nn_file.tsv")
diann <- data.table::fread("DIRECTORY/spectronaut_file.tsv")
spectronaut <- data.table::fread("DIRECTORY/maxquant_evidence.txt")
mq_evidence <- data.table::fread("DIRECTORY/maxquant_proteinGroups.txt")
mq_proteinGroups <- data.table::fread("DIRECTORY/pd_PSMs.txt") pd_psm
Some examples are provided to explore the workflow.
#DIA-NN
<- flowTraceR::get_example("DIA-NN")
diann
#Spectronaut
<- flowTraceR::get_example("Spectronaut")
spectronaut
#MaxQuant
<- flowTraceR::get_example("MaxQuant")[["evidence"]]
mq_evidence
<- flowTraceR::get_example("MaxQuant")[["proteinGroups"]]
mq_proteinGroups
#PD
<- flowTraceR::get_example("PD") pd_psm
The input data can be converted to a standardized output format on precursor, modified peptide and proteingroup level. The generated columns with flowTraceR are appendend to the submitted data without any filtering performed. The generated columns are denoted with the prefix traceR. Note that only the modifications UniMod:35 (Oxidation) and UniMod:4 (Carbamidomethyl) are supported by flowTraceR. A column with the appendix unknownMods is generated to potentially filter modifications which are not supported: if TRUE, an unknown modification is detected.
For converting the precursor level use convert_precursor()
.
<- convert_precursor(input_df = diann, software = "DIA-NN")
diann_precursor_converted <- convert_precursor(input_df = spectronaut, software = "Spectronaut")
spectronaut_precursor_converted <- convert_precursor(input_df = mq_evidence, software = "MaxQuant")
mq_precursor_converted <- convert_precursor(input_df = pd_psm, software = "PD") pd_precursor_converted
For converting the modified peptide level use convert_modified_peptides()
.
<- convert_modified_peptides(input_df = diann, software = "DIA-NN")
diann_peptides_converted <- convert_modified_peptides(input_df = spectronaut, software = "Spectronaut")
spectronaut_peptides_converted <- convert_modified_peptides(input_df = mq_evidence, software = "MaxQuant")
mq_peptides_converted <- convert_modified_peptides(input_df = pd_psm, software = "PD") pd_peptides_converted
For converting the proteinGroup level use convert_proteingroups()
.
<- convert_proteingroups(input_df = diann, software = "DIA-NN")
diann_proteinGroups_converted <- convert_proteingroups(input_df = spectronaut, software = "Spectronaut")
spectronaut_proteinGroups_converted <- convert_proteingroups(input_df = mq_proteinGroups, software = "MaxQuant")
mq_proteinGroups_converted <- convert_proteingroups(input_df = pd_psm, software = "PD") pd_proteinGroups_converted
For converting precursor, modified peptide and proteingroup level at once use convert_all_levels()
.
<- convert_all_levels(input_df = diann, software = "DIA-NN")
diann_all_converted <- convert_all_levels(input_df = spectronaut, software = "Spectronaut")
spectronaut_all_converted <- convert_all_levels(input_df = mq_evidence, input_MQ_pg = mq_proteinGroups, software = "MaxQuant")
mq_all_converted <- convert_all_levels(input_df = pd_psm, software = "PD") pd_all_converted
Since only the modifications UniMod:35 (Oxidation) and UniMod:4 (Carbamidomethyl) are currently supported, flowTraceR provides functions to analyze the conversion and shows how much unknown modifications are present in the dataset with analyze_unknown_mods()
.
#For one software example - equivalent for others.
#Proteome Discoverer
#Reports
<- analyze_unknown_mods(input_df = pd_precursor_converted, level = "precursor", plot = FALSE)
pd_precursor_report_unknown_mods <- analyze_unknown_mods(input_df = pd_peptides_converted, level = "modified_peptides", plot = FALSE)
pd_peptides_report_unknown_mods
#Plots
<- analyze_unknown_mods(input_df = pd_precursor_converted, level = "precursor", plot = TRUE, plot_characteristic = "absolute")
pd_precursor_plot_unknown_mods <- analyze_unknown_mods(input_df = pd_peptides_converted, level = "modified_peptides", plot = TRUE, plot_characteristic = "relative") pd_peptides_plot_unknown_mods
::kable(pd_precursor_report_unknown_mods) kableExtra
Unknown_Modifications | absolute_count | relative_count |
---|---|---|
FALSE | 8 | 88.9 |
TRUE | 1 | 11.1 |
pd_precursor_plot_unknown_mods
For binary software comparisons flowTraceR allows to trace inter-software differences based on the standardized flowTraceR format. Each identification is classified as common - identified in both analyses or as unique - specific to one analysis.
#Binary Comparison - DIA-NN vs. Spectronaut
#ProteinGroup level
<- trace_level(input_df1 = diann_all_converted , input_df2 = spectronaut_all_converted, analysis_name1 = "DIA-NN", analysis_name2 = "Spectronaut", level = "proteinGroups", filter_unknown_mods = TRUE)
traced_proteinGroups
#Peptide level
<- trace_level(input_df1 = diann_all_converted, input_df2 = spectronaut_all_converted, analysis_name1 = "DIA-NN", analysis_name2 = "Spectronaut", level = "modified_peptides", filter_unknown_mods = TRUE)
traced_peptides
#Precursor level
<- trace_level(input_df1 = diann_all_converted, input_df2 = spectronaut_all_converted, analysis_name1 = "DIA-NN", analysis_name2 = "Spectronaut", level = "precursor", filter_unknown_mods = TRUE) traced_precursor
#Binary Comparison - DIA-NN vs. Spectronaut
#trace all levels in one step
<- trace_all_levels(input_df1 = diann_all_converted, input_df2 = spectronaut_all_converted, analysis_name1 = "DIA-NN", analysis_name2 = "Spectronaut", filter_unknown_mods = TRUE) traced_all
Combine two levels after categorization in unique and common entries. Possible connections are proteinGroup or modified peptide with precursor categorization.
#ProteinGroup level
<- connect_traceR_levels(input_df = traced_all[["DIA-NN"]], level = "proteinGroups")
DIANN_connected_proteinGroup <- connect_traceR_levels(input_df = traced_all[["Spectronaut"]], level = "proteinGroups")
Spectronaut_connected_proteinGroup
#Peptide level
<- connect_traceR_levels(input_df = traced_all[["DIA-NN"]], level = "modified_peptides")
DIANN_connected_peptides <- connect_traceR_levels(input_df = traced_all[["Spectronaut"]], level = "modified_peptides") Spectronaut_connected_peptides
Generate a report or visualize the output of connecting the flowTraceR levels on proteinGroup_precursor or modified.peptides_precursor categorization in:
#Example for proteinGroup level
#*Plots*
#upper level - proteinGroup level - how many proteingroups have a specific categorization
<- analyze_connected_levels(input_df = DIANN_connected_proteinGroup, connected_levels = "proteinGroup_precursor",count_level = "upper", plot = TRUE, plot_characteristic = "absolute")
DIANN_plot_proteinGroups_upper
<- analyze_connected_levels(input_df = Spectronaut_connected_proteinGroup, connected_levels = "proteinGroup_precursor", count_level = "upper", plot = TRUE, plot_characteristic = "absolute")
Spectronaut_plot_proteinGroups_upper
#lower level - precursor level - how many precursor have a specific categorization
<- analyze_connected_levels(input_df = DIANN_connected_proteinGroup, connected_levels = "proteinGroup_precursor",count_level = "lower", plot = TRUE, plot_characteristic = "absolute")
DIANN_plot_proteinGroups_lower
<- analyze_connected_levels(input_df = Spectronaut_connected_proteinGroup, connected_levels = "proteinGroup_precursor", count_level = "lower", plot = TRUE, plot_characteristic = "absolute")
Spectronaut_plot_proteinGroups_lower
#*Reports*
#ProteinGroup level
<- analyze_connected_levels(input_df = DIANN_connected_proteinGroup, connected_levels = "proteinGroup_precursor",count_level = "upper", plot = FALSE)
DIANN_report_proteinGroups
<- analyze_connected_levels(input_df = Spectronaut_connected_proteinGroup, connected_levels = "proteinGroup_precursor",count_level = "lower", plot = FALSE) Spectronaut_report_proteinGroups
::kable(DIANN_report_proteinGroups) kableExtra
Connected_proteinGroups_precursor | absolute_count | relative_count |
---|---|---|
common_common | 2 | 20 |
common_unique | 1 | 10 |
unique_common | 3 | 30 |
unique_unique | 4 | 40 |
DIANN_plot_proteinGroups_upper
Filter for potential common precursor and unique proteinGroup connections. It is possible to trace differences in proteinGroup denotations for common precursor.
#with string_analysis = TRUE - if protein denotation is mentioned in both proteinGroups of input_df1/_df2 are filtered out - only distinct protein denotations remain
<- trace_unique_common_pg(input_df1 = DIANN_connected_proteinGroup, input_df2 = Spectronaut_connected_proteinGroup, analysis_name1 = "DIA-NN", analysis_name2 = "Spectronaut", string_analysis = FALSE)
Difference_proteinGroup
<- trace_unique_common_pg(input_df1 = DIANN_connected_proteinGroup, input_df2 = Spectronaut_connected_proteinGroup, analysis_name1 = "DIA-NN", analysis_name2 = "Spectronaut", string_analysis = TRUE) Difference_proteinGroup_reduced
traceR_proteinGroups_DIA-NN | traceR_precursor | traceR_proteinGroups_Spectronaut |
---|---|---|
P01764 | AEDTAVYYC(UniMod:4)AK2 | A0A0J9YY99 |
Q92496 | EGIVEYPR2 | Q02985 |
EXAMPLE1;EXAMPLE2 | COMMON2 | EXAMPLE2 |
Second, string_analysis = TRUE is applied. ProteiGroups, which have similar proteins, are filtered.
traceR_proteinGroups_DIA-NN | traceR_precursor | traceR_proteinGroups_Spectronaut |
---|---|---|
P01764 | AEDTAVYYC(UniMod:4)AK2 | A0A0J9YY99 |
Q92496 | EGIVEYPR2 | Q02985 |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.