The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

CRAN status

Fully Latent Principal Stratification (FLPS)1

Fully Latent Principal Stratification (FLPS) is an extension of principal stratification.

Installation

Install the latest release from CRAN or git repository:

devtools::install_github("sooyongl/flps")
install.packages("flps")
library(flps)
## Version: 1.0.0
## 
## It is a demo.
## Acknowledgements. It is supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305D210036.

Basic working example

Load Example Data

data(binary)
# Input data frame
data.table::data.table(binary)
##       schid    id   sex  race pretest stdscore    cm_sex   cm_race cm_pretest
##       <int> <int> <int> <int>   <int>    <num>     <num>     <num>      <num>
##    1:     1  2383     0     1      20  -0.3296 0.4406780 0.9322034   14.81356
##    2:     1  2384     1     0       8   1.1597 0.4406780 0.9322034   14.81356
##    3:     1  2385     0     1      14  -0.7385 0.4406780 0.9322034   14.81356
##    4:     1  2387     0     1      12  -1.3518 0.4406780 0.9322034   14.81356
##    5:     1  2388     0     1       6  -1.2057 0.4406780 0.9322034   14.81356
##   ---                                                                        
## 4762:    63  4761     0     1      16   0.6457 0.4860558 0.3944223   17.03187
## 4763:    63  4763     0     0      11   0.3168 0.4860558 0.3944223   17.03187
## 4764:    63  4764     0     0      18  -0.4114 0.4860558 0.3944223   17.03187
## 4765:    63  4765     1     0      31   2.2116 0.4860558 0.3944223   17.03187
## 4766:    63  4766     1     1      13  -0.0668 0.4860558 0.3944223   17.03187
##       cm_stdscore   trt      Y    q1    q2    q3    q4    q5    q6    q7    q8
##             <num> <int>  <num> <int> <int> <int> <int> <int> <int> <int> <int>
##    1:  -0.4068119     1 -0.487     0    NA     1     1     1     1     1    NA
##    2:  -0.4068119     1  0.487     1    NA     1     1     1     1     1     1
##    3:  -0.4068119     1 -1.073     0    NA     1     1     0    NA    NA    NA
##    4:  -0.4068119     1 -1.087     0    NA     1     1     1    NA    NA    NA
##    5:  -0.4068119     1 -1.171     0    NA     1     1    NA    NA    NA    NA
##   ---                                                                         
## 4762:   0.0997502     0 -0.114     0    NA    NA    NA    NA    NA    NA    NA
## 4763:   0.0997502     0 -0.438     0    NA    NA    NA    NA    NA    NA    NA
## 4764:   0.0997502     0 -1.047     0    NA    NA    NA    NA    NA    NA    NA
## 4765:   0.0997502     0  0.765     0    NA    NA    NA    NA    NA    NA    NA
## 4766:   0.0997502     0  0.539     0    NA    NA    NA    NA    NA    NA    NA
##          q9   q10   q11   q12   q13   q14   q15   q16   q17   q18   q19   q20
##       <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
##    1:    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
##    2:     1     1     1     1    NA    NA    NA    NA    NA    NA    NA    NA
##    3:    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
##    4:    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
##    5:    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
##   ---                                                                        
## 4762:    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 4763:    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 4764:    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 4765:    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 4766:    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA

Model Fitting with FLPS

modelBuilder(type = "rasch")
complied_stan <- importModel(type = "rasch")
remove.packages(c("rstan", "StanHeaders"))
install.packages("rstan", repos = c("https://mc-stan.org/r-packages/", getOption("repos")))

Now, execute your FLPS model. Given the time-intensive nature of the process, chains and iterations have been initially limited to 1 and 5000, respectively. It is advisable to increase these values for your specific research needs.

# Subset of data: 1000 students
binary <- binary[c(sample(which(binary$trt == 1), 250), 
                   sample(which(binary$trt == 0), 250)),]

res <- runFLPS(
  inp_data = binary,
  # complied_stan = complied # if necessary
  outcome = "Y",
  trt = "trt",
  covariate = c("sex","race","pretest","stdscore"),
  lv_type = "rasch",
  lv_model = "F =~ q1 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + q10",
  stan_options = list(iter = 5000, cores = 1, chains = 2)
)

Results

Retrieve summaries and visualize results with the following:

summary(res)

The flps_plot() shows the plot related to FLPS models

flps_plot(res, type = "causal")

flps_plot(res, type = "latent")


  1. Acknowledgements. This package is supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305D210036.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.