The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
To begin, we’ll load foqat and show three datasets in
foqat:
voc is a dataset about time series of volatile organic
compounds with 1-hour resolution.
library(foqat)
head(voc)
#> Time Propylene Acetylene n.Butane trans.2.Butene Cyclohexane
#> 1 2020-05-01 00:00:00 0.233 0.1750 0.544 0.020 0.1020
#> 2 2020-05-01 01:00:00 0.376 0.2025 0.704 0.028 0.1045
#> 3 2020-05-01 02:00:00 0.519 0.2300 0.864 0.036 0.1070
#> 4 2020-05-01 03:00:00 0.805 0.2850 1.184 0.052 0.1120
#> 5 2020-05-01 04:00:00 0.658 0.2920 1.304 0.075 0.1230
#> 6 2020-05-01 05:00:00 0.538 0.3700 0.904 0.049 0.1110vocct() allows you to convert unit of VOCs between
micrograms per cubic meter (ugm) and parts per billion by volume (ppbv);
conduct statistics of VOC concentrations.
You need to set unit into “ugm” or “ppbv”. “ugm” means ug
m-3. “ppbv” means part per billion volumn.
voc_con=vocct(voc, unit = "ppbv")
summary(voc_con)
#> Length Class Mode
#> MW_Result 7 data.frame list
#> Con_ugm 6 data.frame list
#> Con_ugm_stat 9 data.frame list
#> Con_ugm_group 4 data.frame list
#> Con_ugm_group_stat 9 data.frame list
#> Con_ppbv 6 data.frame list
#> Con_ppbv_stat 9 data.frame list
#> Con_ppbv_group 4 data.frame list
#> Con_ppbv_group_stat 9 data.frame listMW_Result is the matched Molecular Weight (MW) value
results.
voc_con[["MW_Result"]]
#> Name CAS Matched_Name MIR MW Group Raw_order
#> 3 n-Butane 106-97-8 n-butane 1.15 58.12 Alkanes 3
#> 5 Cyclohexane 110-82-7 cyclohexane 1.25 84.16 Alkanes 5
#> 1 Propylene 115-07-1 propene 11.66 42.08 Alkenes 1
#> 4 trans-2-Butene 624-64-6 trans-2-butene 15.16 56.11 Alkenes 4
#> 2 Acetylene 74-86-2 acetylene 0.95 26.04 Alkynes 2Con_ugm is time series of VOC mass concentrations by
species.
head(voc_con[["Con_ugm"]])
#> Time n.Butane Cyclohexane Propylene trans.2.Butene Acetylene
#> 1 2020-05-01 00:00:00 1.293132 0.3510947 0.4010052 0.04589746 0.1863792
#> 2 2020-05-01 01:00:00 1.673465 0.3597000 0.6471157 0.06425644 0.2156673
#> 3 2020-05-01 02:00:00 2.053798 0.3683052 0.8932262 0.08261543 0.2449555
#> 4 2020-05-01 03:00:00 2.814464 0.3855157 1.3854472 0.11933339 0.3035318
#> 5 2020-05-01 04:00:00 3.099714 0.4233789 1.1324525 0.17211547 0.3109870
#> 6 2020-05-01 05:00:00 2.148881 0.3820736 0.9259262 0.11244877 0.3940588Con_ugm_stat is the statistics of VOC mass concentration
by species.
voc_con[["Con_ugm_stat"]]
#> Species Mean SD Min Q25 Q50 Q75 Max Proportion
#> 1 n.Butane 2.569 2.147 0.780 1.331 1.916 2.793 13.371 0.5478
#> 3 Propylene 1.206 0.970 0.401 0.642 0.883 1.255 6.993 0.2571
#> 5 Acetylene 0.441 0.196 0.119 0.310 0.399 0.533 1.041 0.0940
#> 2 Cyclohexane 0.350 0.139 0.227 0.268 0.308 0.386 1.215 0.0746
#> 4 trans.2.Butene 0.124 0.063 0.046 0.087 0.103 0.129 0.461 0.0264Con_ugm_group is the time series of VOC mass
concentration classified by groups.
head(voc_con[["Con_ugm_group"]])
#> Time Alkanes Alkenes_exclude_BVOC Alkynes
#> 1 2020-05-01 00:00:00 1.644227 0.4469027 0.1863792
#> 2 2020-05-01 01:00:00 2.033165 0.7113722 0.2156673
#> 3 2020-05-01 02:00:00 2.422103 0.9758416 0.2449555
#> 4 2020-05-01 03:00:00 3.199980 1.5047806 0.3035318
#> 5 2020-05-01 04:00:00 3.523093 1.3045680 0.3109870
#> 6 2020-05-01 05:00:00 2.530955 1.0383750 0.3940588Con_ugm_group_stat is the statistics of VOC mass
concentration according to major groups.
voc_con[["Con_ugm_group_stat"]]
#> Species Mean SD min Q25 Q50 Q75 Max Proportion
#> 1 Alkanes 2.919 2.244 1.031 1.639 2.282 3.114 13.791 0.6225
#> 2 Alkenes_exclude_BVOC 1.329 1.023 0.447 0.744 0.994 1.360 7.454 0.2834
#> 3 Alkynes 0.441 0.196 0.119 0.310 0.399 0.533 1.041 0.0940Con_ppbv is the time series of VOC volume concentration
by species.
head(voc_con[["Con_ppbv"]])
#> Time n.Butane Cyclohexane Propylene trans.2.Butene Acetylene
#> 1 2020-05-01 00:00:00 0.544 0.1020 0.233 0.020 0.1750
#> 2 2020-05-01 01:00:00 0.704 0.1045 0.376 0.028 0.2025
#> 3 2020-05-01 02:00:00 0.864 0.1070 0.519 0.036 0.2300
#> 4 2020-05-01 03:00:00 1.184 0.1120 0.805 0.052 0.2850
#> 5 2020-05-01 04:00:00 1.304 0.1230 0.658 0.075 0.2920
#> 6 2020-05-01 05:00:00 0.904 0.1110 0.538 0.049 0.3700Con_ppbv_stat is the statistics of VOC volume
concentration by species.
voc_con[["Con_ppbv_stat"]]
#> species Mean sd Min Q25 Q50 Q75 Max Proportion
#> 1 n.Butane 1.081 0.903 0.328 0.560 0.806 1.175 5.625 0.4598
#> 3 Propylene 0.700 0.563 0.233 0.373 0.513 0.729 4.063 0.2977
#> 5 Acetylene 0.414 0.184 0.112 0.292 0.375 0.500 0.977 0.1761
#> 2 Cyclohexane 0.102 0.040 0.066 0.078 0.090 0.112 0.353 0.0434
#> 4 trans.2.Butene 0.054 0.027 0.020 0.038 0.045 0.056 0.201 0.0230Con_ppbv_group is the time series of VOC volume
concentration according to major groups.
head(voc_con[["Con_ppbv_group"]])
#> Time Alkanes Alkenes_exclude_BVOC Alkynes
#> 1 2020-05-01 00:00:00 0.6460 0.253 0.1750
#> 2 2020-05-01 01:00:00 0.8085 0.404 0.2025
#> 3 2020-05-01 02:00:00 0.9710 0.555 0.2300
#> 4 2020-05-01 03:00:00 1.2960 0.857 0.2850
#> 5 2020-05-01 04:00:00 1.4270 0.733 0.2920
#> 6 2020-05-01 05:00:00 1.0150 0.587 0.3700Con_ppbv_group_stat is the time series of VOC volume
concentration classified by groups.
The ofp() allows you to statistics time series:
voc_ofp=ofp(voc)
summary(voc_ofp)
#> Length Class Mode
#> MIR_Result 8 data.frame list
#> OFP_Result 6 data.frame list
#> OFP_Result_stat 9 data.frame list
#> OFP_Result_group 4 data.frame list
#> OFP_Result_group_stat 9 data.frame listMIR_Result is the matched MIR value results.
voc_ofp[["MIR_Result"]]
#> Name CAS Matched_Name MIR MIR_type MW Group Raw_order
#> 3 n-Butane 106-97-8 n-butane 1.15 USA 58.12 Alkanes 3
#> 5 Cyclohexane 110-82-7 cyclohexane 1.25 USA 84.16 Alkanes 5
#> 1 Propylene 115-07-1 propene 11.66 USA 42.08 Alkenes 1
#> 4 trans-2-Butene 624-64-6 trans-2-butene 15.16 USA 56.11 Alkenes 4
#> 2 Acetylene 74-86-2 acetylene 0.95 USA 26.04 Alkynes 2OFP_Result is the OFP time series of VOC by species.
head(voc_ofp[["OFP_Result"]])
#> Time n.Butane Cyclohexane Propylene trans.2.Butene Acetylene
#> 1 2020-05-01 00:00:00 0.757 0.224 2.382 0.354 0.090
#> 2 2020-05-01 01:00:00 0.980 0.229 3.843 0.496 0.104
#> 3 2020-05-01 02:00:00 1.203 0.235 5.305 0.638 0.119
#> 4 2020-05-01 03:00:00 1.649 0.245 8.229 0.922 0.147
#> 5 2020-05-01 04:00:00 1.816 0.270 6.726 1.329 0.150
#> 6 2020-05-01 05:00:00 1.259 0.243 5.499 0.868 0.191OFP_Result_stat is the statistics of OFP of VOC by
species.
voc_ofp[["OFP_Result_stat"]]
#> Species Mean SD Min Q25 Q50 Q75 Max Proportion
#> 3 Propylene 7.160 5.759 2.382 3.812 5.244 7.452 41.531 0.7119
#> 1 n.Butane 1.505 1.258 0.457 0.779 1.122 1.636 7.833 0.1496
#> 4 trans.2.Butene 0.957 0.484 0.355 0.673 0.798 0.997 3.562 0.0952
#> 2 Cyclohexane 0.223 0.089 0.145 0.171 0.196 0.246 0.774 0.0222
#> 5 Acetylene 0.213 0.095 0.058 0.150 0.193 0.258 0.504 0.0212OFP_Result_group is the time series of VOC classified by
groups.
head(voc_ofp[["OFP_Result_group"]])
#> Time Alkanes Alkenes_exclude_BVOC Alkynes
#> 1 2020-05-01 00:00:00 0.981 2.736 0.090
#> 2 2020-05-01 01:00:00 1.209 4.340 0.104
#> 3 2020-05-01 02:00:00 1.438 5.943 0.119
#> 4 2020-05-01 03:00:00 1.894 9.150 0.147
#> 5 2020-05-01 04:00:00 2.085 8.055 0.150
#> 6 2020-05-01 05:00:00 1.502 6.368 0.191OFP_Result_group_stat is the statistics of OFP of VOC
according to major groups.
The loh() allows you to statistics time series:
voc_loh=loh(voc)
summary(voc_loh)
#> Length Class Mode
#> KOH_Result 8 data.frame list
#> LOH_Result 6 data.frame list
#> LOH_Result_stat 9 data.frame list
#> LOH_Result_group 4 data.frame list
#> LOH_Result_group_stat 9 data.frame listKOH_Result is the matched KOH value results.
voc_loh[["KOH_Result"]]
#> Name CAS Matched_Name Koh Koh_type MW Group
#> 3 n-Butane 106-97-8 n-butane 2.36e-12 Atkinson 58.12 Alkanes
#> 5 Cyclohexane 110-82-7 cyclohexane 6.97e-12 Atkinson 84.16 Alkanes
#> 1 Propylene 115-07-1 propene 2.63e-11 Atkinson 42.08 Alkenes
#> 4 trans-2-Butene 624-64-6 trans-2-butene 6.40e-11 Atkinson 56.11 Alkenes
#> 2 Acetylene 74-86-2 acetylene 8.15e-13 AopWin 26.04 Alkynes
#> Raw_order
#> 3 3
#> 5 5
#> 1 1
#> 4 4
#> 2 2LOH_Result is the LOH time series of VOC by species.
head(voc_loh[["LOH_Result"]])
#> Time n.Butane Cyclohexane Propylene trans.2.Butene
#> 1 2020-05-01 00:00:00 0.03162059 0.01751024 0.1509283 0.03152601
#> 2 2020-05-01 01:00:00 0.04092076 0.01793941 0.2435581 0.04413641
#> 3 2020-05-01 02:00:00 0.05022093 0.01836858 0.3361880 0.05674682
#> 4 2020-05-01 03:00:00 0.06882128 0.01922693 0.5214476 0.08196763
#> 5 2020-05-01 04:00:00 0.07579641 0.02111528 0.4262267 0.11822254
#> 6 2020-05-01 05:00:00 0.05254598 0.01905526 0.3484954 0.07723873
#> Acetylene
#> 1 0.003512810
#> 2 0.004064823
#> 3 0.004616836
#> 4 0.005720863
#> 5 0.005861375
#> 6 0.007427085LOH_Result_stat is the statistics of LOH of VOC by
species.
voc_loh[["LOH_Result_stat"]]
#> Species Mean sd Min Q25 Q50 Q75 Max Proportion
#> 3 Propylene 0.454 0.365 0.151 0.242 0.332 0.472 2.632 0.7241
#> 4 trans.2.Butene 0.085 0.043 0.032 0.060 0.071 0.089 0.317 0.1356
#> 1 n.Butane 0.063 0.053 0.019 0.033 0.047 0.068 0.327 0.1005
#> 2 Cyclohexane 0.017 0.007 0.011 0.013 0.015 0.019 0.061 0.0271
#> 5 Acetylene 0.008 0.004 0.002 0.006 0.008 0.010 0.020 0.0128LOH_Result_group is the LOH time series of VOC
classified by groups.
head(voc_loh[["LOH_Result_group"]])
#> Time Alkanes Alkenes_exclude_BVOC Alkynes
#> 1 2020-05-01 00:00:00 0.04913082 0.1824543 0.003512810
#> 2 2020-05-01 01:00:00 0.05886017 0.2876945 0.004064823
#> 3 2020-05-01 02:00:00 0.06858952 0.3929348 0.004616836
#> 4 2020-05-01 03:00:00 0.08804821 0.6034152 0.005720863
#> 5 2020-05-01 04:00:00 0.09691170 0.5444493 0.005861375
#> 6 2020-05-01 05:00:00 0.07160123 0.4257341 0.007427085LOH_Result_group_stat is the statistics of LOH of VOC
according to major groups.
The koh() allows you Searches KOH value from
‘chemspider.com’.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.