The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Customizing Wrapper Functions

Nickalus Redell

2020-05-05

Purpose

The purpose of this vignette is to provide a closer look at how the user-supplied model training and predict wrapper functions can be modified to give greater control over the model-building process. The goal is to present examples of how the wrapper functions could be flexibly written to keep a linear workflow in forecastML while modeling across multiple forecast horizons and validation datasets. The alternative would be to train models across a single forecast horizon and/or validation window and customize the wrapper functions for this specific setup.

Example 1 - Multiple forecast horizons and 1 model training function

library(DT)
library(dplyr)
library(ggplot2)
library(forecastML)
library(randomForest)

data("data_seatbelts", package = "forecastML")
data <- data_seatbelts

data <- data[, c("DriversKilled", "kms", "PetrolPrice", "law")]

dates <- seq(as.Date("1969-01-01"), as.Date("1984-12-01"), by = "1 month")
data_train <- forecastML::create_lagged_df(data,
                                           type = "train",
                                           outcome_col = 1, 
                                           lookback = 1:12,
                                           horizons = c(3, 12),
                                           dates = dates,
                                           frequency = "1 month")

# View the horizon 3 lagged dataset.
DT::datatable(head((data_train$horizon_3)), options = list("scrollX" = TRUE))


windows <- forecastML::create_windows(data_train, window_length = 0, 
                                      window_start = as.Date("1984-01-01"),
                                      window_stop = as.Date("1984-12-01"))

plot(windows, data_train)

User-defined model-training function

attributes(data_train$horizon_3)$horizon
## [1] 3
attributes(data_train$horizon_12)$horizon
## [1] 12
model_function <- function(data, my_outcome_col = 1, n_tree = c(200, 100)) {

  outcome_names <- names(data)[my_outcome_col]
  model_formula <- formula(paste0(outcome_names,  "~ ."))
  
  if (attributes(data)$horizon == 3) {  # Model 1
    
          model <- randomForest::randomForest(formula = model_formula, 
                                              data = data, 
                                              ntree = n_tree[1])
          
          return(list("my_trained_model" = model, "n_tree" = n_tree[1], 
                      "meta_data" = attributes(data)$horizon))
      
  } else if (attributes(data)$horizon == 12) {  # Model 2
    
          model <- randomForest::randomForest(formula = model_formula, 
                                              data = data, 
                                              ntree = n_tree[2])
          
          return(list("my_trained_model" = model, "n_tree" = n_tree[2],
                      "meta_data" = attributes(data)$horizon))
  }
}
model_results <- forecastML::train_model(data_train, windows, model_name = "RF", model_function)
model_results$horizon_3$window_1$model
## $my_trained_model
## 
## Call:
##  randomForest(formula = model_formula, data = data, ntree = n_tree[1]) 
##                Type of random forest: regression
##                      Number of trees: 200
## No. of variables tried at each split: 13
## 
##           Mean of squared residuals: 247.162
##                     % Var explained: 59.72
## 
## $n_tree
## [1] 200
## 
## $meta_data
## [1] 3
model_results$horizon_12$window_1$model
## $my_trained_model
## 
## Call:
##  randomForest(formula = model_formula, data = data, ntree = n_tree[2]) 
##                Type of random forest: regression
##                      Number of trees: 100
## No. of variables tried at each split: 1
## 
##           Mean of squared residuals: 420.6497
##                     % Var explained: 31.45
## 
## $n_tree
## [1] 100
## 
## $meta_data
## [1] 12

User-defined prediction function

prediction_function <- function(model, data_features) {
  
    if (model$meta_data == 3) {  # Perform a transformation specific to model 1.
      
        data_pred <- data.frame("y_pred" = predict(model$my_trained_model, data_features))
    }
  
    if (model$meta_data == 12) {  # Perform a transformation specific to model 2.
      
        data_pred <- data.frame("y_pred" = predict(model$my_trained_model, data_features))
    }

  return(data_pred)
}
data_results <- predict(model_results,
                        prediction_function = list(prediction_function),
                        data = data_train)
plot(data_results)


These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.