The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
\[ \begin{aligned} \mathrm{P} [Y = y | p] &= \begin{cases} 1 - p & \text{ for } y = 0 \\ p & \text{ for } y = 1 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathrm{E}[Y] &= p \\ \mathrm{var}[Y] &= p (1 - p) \\ \end{aligned} \]
\[ \nabla_{m} (y; p) = \begin{cases} \frac{1}{p - 1} & \text{ for } y = 0 \\ \frac{1}{p} & \text{ for } y = 1 \\ \end{cases} \]
\[ \begin{aligned} \mathcal{I}_{p, p} (p) &= \frac{1}{p (1 - p)} \\ \end{aligned} \]
\[ \begin{aligned} \mathrm{P} [\boldsymbol{Y} = \boldsymbol{y} | \boldsymbol{w}] &= \frac{1}{\sum_{i=1}^n w_i} \prod_{i=1}^n w_i^{y_i} \end{aligned} \]
\[ \begin{aligned} \mathrm{E}[\boldsymbol{Y}] &= \frac{1}{\sum_{i=1}^n w_i} \boldsymbol{w} \\ \mathrm{var}[\boldsymbol{Y}] &= \frac{1}{\sum_{i=1}^n w_i} \mathrm{diag} (\boldsymbol{w}) - \frac{1}{\left( \sum_{i=1}^n w_i \right)^2} \boldsymbol{w} \boldsymbol{w}^\intercal \\ \end{aligned} \]
\[ \nabla_{\boldsymbol{w}} (\boldsymbol{y}; \boldsymbol{w}) = \boldsymbol{y} \oslash \boldsymbol{w} - \frac{1}{\sum_{i=1}^n w_i} \boldsymbol{1}_n \]
\[ \mathcal{I}_{\boldsymbol{w}, \boldsymbol{w}} (\boldsymbol{w}) = \mathrm{diag} \left( \sum_{i=1}^n w_i \boldsymbol{1}_n \oslash \boldsymbol{w} \right) - \frac{1}{\left( \sum_{i=1}^n w_i \right)^2} \boldsymbol{1}_{n \times n} \]
We treat the categorical distribution as a multivariate distribution. For \(n\) categories, observations are in the form of vectors of length \(n\) with exactly one element equal to 1 and the others to 0.
The probability mass function is invariant to the multiplication by a constant of the worth parameters. In the case of the logarithmic transformation, it is invariant to the addition of a constant to the transformed worth parameters. The parameters therefore need to be standardized, e.g. to zero sum in the latter case.
\[ \mathrm{P} [\boldsymbol{Y} = \boldsymbol{y} | w_1, \ldots, w_n] = \prod_{j=1}^n \frac{w_{j^{\mathrm{th}}}}{\sum_{k=j}^n w_{k^{\mathrm{th}}}} \]
\[ \nabla_{w_i} (\boldsymbol{y}; w_1, \ldots, w_n) = \frac{1}{w_i} - \sum_{j=1}^{y_i} \frac{1}{\sum_{k = j}^n w_{k^{\mathrm{th}}}} \]
The expected value, the variance, and the Fisher information are computed directly from the definitions as sums over all possible rankings. As the number of permutations grows drastically with increasing \(n\), we only use this approach for \(n \leq 6\). For \(n \geq 7\), we randomly sample 1 000 rankings. We locally set seed so the results are always the same.
The probability mass function is invariant to the multiplication by a constant of the worth parameters. In the case of the logarithmic transformation, it is invariant to the addition of a constant to the transformed worth parameters. The parameters therefore need to be standardized, e.g. to zero sum in the latter case.
Alvo, M. and Yu, P. L. H. (2014). Statistical Methods for Ranking Data. Springer. doi: 10.1007/978-1-4939-1471-5.
Holý, V. and Zouhar, J. (2022). Modelling Time-Varying Rankings with Autoregressive and Score-Driven Dynamics. Journal of the Royal Statistical Society: Series C (Applied Statistics), 71(5). doi: 10.1111/rssc.12584.
Luce, R. D. (1977). The Choice Axiom after Twenty Years. Journal of Mathematical Psychology, 15(3), 215–233. doi: 10.1016/0022-2496(77)90032-3.
Plackett, R. L. (1975). The Analysis of Permutations. Journal of the Royal Statistical Society: Series C (Applied Statistics), 24(2), 193–202. doi: 10.2307/2346567.
\[ \mathrm{P} [Y = y | m, s] \approx \frac{1}{1 + \frac{1 - s}{12 s m} \left(1 + \frac{1}{s m} \right)} \sqrt{s} \frac{y^y}{y!} \left( \frac{m}{y} \right)^{s y} \exp(s y - s m - y) \]
\[ \begin{aligned} \mathrm{E}[Y] &\approx m \\ \mathrm{var}[Y] &\approx \frac{m}{s} \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s) &\approx \frac{s}{m} (y - m) \\ \nabla_{s} (y; m, s) &\approx \frac{1}{2 s} - m \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s) &\approx \frac{s}{m} \\ \mathcal{I}_{m, s} (m, s) &\approx 0 \\ \mathcal{I}_{s, s} (m, s) &\approx \frac{1}{2 s^2} \\ \end{aligned} \]
Aragon, D. C., Achcar, J. A., and Martinez, E. Z. (2018). Maximum Likelihood and Bayesian Estimators for the Double Poisson Distribution. Journal of Statistical Theory and Practice, 12(4), 886–911. doi: 10.1080/15598608.2018.1489919.
Cameron, A. C. and Trivedi, P. K. (2013). Regression Analysis of Count Data. Second Edition. Cambridge University Press. doi: 10.1017/cbo9781139013567.
Efron, B. (1986). Double Exponential Families and Their Use in Generalized Linear Regression. Journal of the American Statistical Association, 81(395), 709–721. doi: 10.1080/01621459.1986.10478327.
Hilbe, J. M. (2011). Negative Binomial Regression. Second Edition. Cambridge University Press. doi: 10.1017/cbo9780511973420.
Holý, V. and Tomanová, P. (2022). Modeling Price Clustering in High-Frequency Prices. Quantitative Finance. doi: 10.1080/14697688.2022.2050285.
Sellers, K. F. and Morris, D. S. (2017). Underdispersion Models: Models That Are “Under the Radar.” Communications in Statistics - Theory and Methods, 46(24), 12075–12086. doi: 10.1080/03610926.2017.1291976.
Zou, Y., Geedipally, S. R., and Lord, D. (2013). Evaluating the Double Poisson Generalized Linear Model. Accident Analysis and Prevention, 59, 497–505. doi: 10.1016/j.aap.2013.07.017.
\[ \mathrm{P} [Y = y | m] = \frac{1}{1 + m} \left( \frac{m}{1 + m} \right)^{y} \]
\[ \begin{aligned} \mathrm{E}[Y] &= m \\ \mathrm{var}[Y] &= m (1 + m) \\ \end{aligned} \]
\[ \nabla_{m} (y; m) = \frac{y - m}{m (1 + m) } \]
\[ \mathcal{I}_{m, m} (m) = \frac{1}{m (1 + m)} \]
\[ \mathrm{P} [Y = y | p] = p (1 - p)^{y} \]
\[ \begin{aligned} \mathrm{E}[Y] &= \frac{1 - p}{p} \\ \mathrm{var}[Y] &= \frac{1 - p}{p^2} \\ \end{aligned} \]
\[ \nabla_{p} (y; p) = \frac{p y + p - 1}{p (p - 1)} \]
\[ \mathcal{I}_{p, p} (p) = \frac{1}{p^2 (1 - p)} \]
\[ \mathrm{P} [Y = y | m, s] = \frac{\Gamma (y + s^{-1})}{\Gamma (y + 1) \Gamma (s^{-1})} \left( \frac{1}{1 + s m} \right)^{s^{-1}} \left( \frac{s m}{1 + s m} \right)^{y} \]
\[ \begin{aligned} \mathrm{E}[Y] &= m \\ \mathrm{var}[Y] &= m (1 + s m) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s) &= \frac{y - m}{m (1 + s m) } \\ \nabla_{s} (y; m, s) &= \frac{ y - m}{s (1 + s m)} + \frac{1}{s^2} \left( \ln(1 + s m) + \psi_0 \left( \frac{1}{s} \right) - \psi_0 \left( y + \frac{1}{s} \right) \right) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s) &= \frac{1}{m (1 + s m)} \\ \mathcal{I}_{m, s} (m, s) &= 0 \\ \mathcal{I}_{s, s} (m, s) &\approx \frac{1}{s^4} \left( \ln(1 + s m) + \psi_0 \left( \frac{1}{s} \right) - \psi_0 \left( m + \frac{1}{s} \right) \right)^2 \\ \end{aligned} \]
\[ \mathrm{P} [Y = y | p, r] = \frac{\Gamma(y + r)}{\Gamma(y + 1) \Gamma(r)} (1 - p)^y p^r \]
\[ \begin{aligned} \mathrm{E}[Y] &= \frac{r (1 - p)}{p} \\ \mathrm{var}[Y] &= \frac{r (1 - p)}{p^2} \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{p} (y; p, r) &= \frac{p r + p y - r}{p (p - 1)} \\ \nabla_{r} (y; p, r) &= \ln(p) - \psi_0(r) + \psi_0(y + r) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{p, p} (p, r) &= \frac{r}{p^2 (1 - p)} \\ \mathcal{I}_{p, r} (p, r) &= -\frac{1}{p} \\ \mathcal{I}_{r, r} (p, r) &\approx \left( \ln(p) - \psi_0(r) + \psi_0 \left( \frac{r}{p} \right) \right)^2 \\ \end{aligned} \]
Cameron, A. C. and Trivedi, P. K. (1986). Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests. Journal of Applied Econometrics, 1(1), 29–53. doi: 10.1002/jae.3950010104.
Cameron, A. C. and Trivedi, P. K. (2013). Regression Analysis of Count Data. Second Edition. Cambridge University Press. doi: 10.1017/cbo9781139013567.
Hilbe, J. M. (2011). Negative Binomial Regression. Second Edition. Cambridge University Press. doi: 10.1017/cbo9780511973420.
\[ \mathrm{P} [Y = y | m] = \frac{m^y}{y!} \exp(-m) \]
\[ \begin{aligned} \mathrm{E}[Y] &= m \\ \mathrm{var}[Y] &= m \\ \end{aligned} \]
\[ \nabla_{m} (y; m) = \frac{y - m}{m} \]
\[ \mathcal{I}_{m, m} (m) = \frac{1}{m} \]
Cameron, A. C. and Trivedi, P. K. (2013). Regression Analysis of Count Data. Second Edition. Cambridge University Press. doi: 10.1017/cbo9781139013567.
Davis, R. A., Dunsmuir, W. T. M., and Street, S. B. (2003). Observation-Driven Models for Poisson Counts. Biometrika, 90(4), 777–790. doi: 10.1093/biomet/90.4.777.
Hilbe, J. M. (2011). Negative Binomial Regression. Second Edition. Cambridge University Press. doi: 10.1017/cbo9780511973420.
\[ \begin{aligned} \mathrm{P} [Y = y | m, p] &= \begin{cases} p + (1 - p) \left( \frac{1}{1 + m} \right) & \text{ for } y = 0 \\ (1 - p) \left( \frac{1}{1 + m} \right) \left( \frac{m}{1 + m} \right)^{y} & \text{ for } y \geq 1 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathrm{E}[Y] &= m (1 - p) \\ \mathrm{var}[Y] &= m(1 - p) (1 + p m + m) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, p) &= \begin{cases} \frac{p - 1}{(1 + m) (1 + p m)} & \text{ for } y = 0 \\ \frac{y - m}{m (1 + m) } & \text{ for } y \geq 1 \\ \end{cases} \\ \nabla_{p} (y; m, p) &= \begin{cases} \frac{m}{1 + p m} & \text{ for } y = 0 \\ \frac{1}{p - 1} & \text{ for } y \geq 1 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, p) &= \frac{(1 - p) (1 + m + p m^2)}{m (1 + m) (1 + p m)} \\ \mathcal{I}_{m, p} (m, p) &= - \frac{1}{ (1 + m) ( 1 + p m) } \\ \mathcal{I}_{p, p} (m, p) &= \frac{m}{(1 - p) ( 1 + p m)} \\ \end{aligned} \]
Blasques, F., Holý, V., and Tomanová, P. (2022). Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros. Working Paper. arXiv: 1812.07318.
Cameron, A. C. and Trivedi, P. K. (2013). Regression Analysis of Count Data. Second Edition. Cambridge University Press. doi: 10.1017/cbo9781139013567.
Greene, W. H. (1994). Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models. NYU Stern School of Business Research Paper Series, EC-94-10. SSRN: 1293115.
Hilbe, J. M. (2011). Negative Binomial Regression. Second Edition. Cambridge University Press. doi: 10.1017/cbo9780511973420.
Lambert, D. (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics, 34(1), 1–14. doi: 10.2307/1269547.
\[ \begin{aligned} \mathrm{P} [Y = y | m, s, p] &= \begin{cases} p + (1 - p) \left( \frac{1}{1 + s m} \right)^{s^{-1}} & \text{ for } y = 0 \\ (1 - p) \frac{\Gamma (y + s^{-1})}{\Gamma (y + 1) \Gamma (s^{-1})} \left( \frac{1}{1 + s m} \right)^{s^{-1}} \left( \frac{s m}{1 + s m} \right)^{y} & \text{ for } y \geq 1 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathrm{E}[Y] &= m (1 - p) \\ \mathrm{var}[Y] &= m(1 - p) (1 + p m + s m) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s, p) &= \begin{cases} \frac{p - 1}{(1 + s m) \left( 1 + p (1 + s m)^{s^{-1}} - p \right)} & \text{ for } y = 0 \\ \frac{y - m}{m (1 + s m) } & \text{ for } y \geq 1 \\ \end{cases} \\ \nabla_{s} (y; m, s, p) &= \begin{cases} \frac{(1 - p) \left( (1 + s m) \ln(1 + s m) -s m \right) }{ s^2 (1 + s m) \left( 1 + p (1 + s m)^{s^{-1}}- p \right) } & \text{ for } y = 0 \\ \frac{ s (y - m) + (1 + s m) \left( \ln(1 + s m) + \psi_0 \left( s^{-1} \right) - \psi_0 \left( y + s^{-1} \right) \right) }{s^2 (1 + s m)} & \text{ for } y \geq 1 \\ \end{cases} \\ \nabla_{p} (y; m, s, p) &= \begin{cases} \frac{(1 + s m)^{s^{-1}} - 1}{1 + p (1 + s m)^{s^{-1}}- p} & \text{ for } y = 0 \\ \frac{1}{p - 1} & \text{ for } y \geq 1 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s, p) &= \frac{p(p - 1)}{(1 + s m)^2 \left( 1 + p (1 + s m)^{s^{-1}} - p \right)} + \frac{1 -p}{m(1 + s m)} \\ \mathcal{I}_{m, s} (m, s, p) &= \frac{\left( p - p^2 \right) \left( (1 + s m) \ln(1 + s m) - s m \right) }{s^2 (1 + s m)^2 \left( 1 + p (1 + s m)^{s^{-1}} -p \right)} \\ \mathcal{I}_{m, p} (m, s, p) &= \frac{-1}{ (1 + s m) \left( 1 + p (1 + s m)^{s^{-1}} - p \right) }\\ \mathcal{I}_{s, s} (m, s, p) &\approx \frac{1}{s^4} \left( \ln(1 + s m) + \psi_0 \left( s^{-1} \right) - \psi_0 \left( y + s^{-1} \right) \right)^2 \left( 1 - p - (1 - p) \left( 1 + s m \right)^{-s^{-1}} \right) \\ & \qquad + \frac{(1 - p)^2 \left( (1 + s m) \ln(1 + s m) - s m \right)^2} {s^4 (1 + s m)^{2 + s^{-1}} \left( 1 + p (1 + s m)^{s^{-1}} - p \right)} \\ \mathcal{I}_{s, p} (m, s, p) &= \frac{(1 + s m) \ln(1 + s m) - s m}{s^2 (1 + s m) \left( 1 + p (1 + s m)^{s^{-1}} - p \right)} \\ \mathcal{I}_{p, p} (m, s, p) &= \frac{1 - (1 + s m)^{s^{-1}}}{(p - 1) \left( 1 + p (1 + s m)^{s^{-1}} - p \right)} \end{aligned} \]
Blasques, F., Holý, V., and Tomanová, P. (2022). Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros. Working Paper. arXiv: 1812.07318.
Cameron, A. C. and Trivedi, P. K. (2013). Regression Analysis of Count Data. Second Edition. Cambridge University Press. doi: 10.1017/cbo9781139013567.
Greene, W. H. (1994). Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models. NYU Stern School of Business Research Paper Series, EC-94-10. SSRN: 1293115.
Hilbe, J. M. (2011). Negative Binomial Regression. Second Edition. Cambridge University Press. doi: 10.1017/cbo9780511973420.
Lambert, D. (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics, 34(1), 1–14. doi: 10.2307/1269547.
\[ \begin{aligned} \mathrm{P} [Y = y | m, p] &= \begin{cases} p + (1 - p) \exp(-m) & \text{ for } y = 0 \\ (1 - p) \frac{m^y}{y!} \exp(-m) & \text{ for } y \geq 1 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathrm{E}[Y] &= m (1 - p) \\ \mathrm{var}[Y] &= m(1 - p) (1 + p m) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s, p) &= \begin{cases} \frac{p - 1}{p \exp(m) - p + 1} & \text{ for } y = 0 \\ \frac{y - m}{m} & \text{ for } y \geq 1 \\ \end{cases} \\ \nabla_{p} (y; m, s, p) &= \begin{cases} \frac{\exp(m) - 1}{p \exp(m) - p + 1} & \text{ for } y = 0 \\ \frac{1}{p - 1} & \text{ for } y \geq 1 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s, p) &= \frac{p (p - 1)}{p \exp(m) - p + 1} - \frac{p - 1}{m} \\ \mathcal{I}_{m, p} (m, s, p) &= - \frac{1}{p \exp(m) - p + 1} \\ \mathcal{I}_{p, p} (m, s, p) &= \frac{\exp(m) - 1}{(1 - p) (p \exp(m) - p + 1)} \\ \end{aligned} \]
Blasques, F., Holý, V., and Tomanová, P. (2022). Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros. Working Paper. arXiv: 1812.07318.
Cameron, A. C. and Trivedi, P. K. (2013). Regression Analysis of Count Data. Second Edition. Cambridge University Press. doi: 10.1017/cbo9781139013567.
Greene, W. H. (1994). Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models. NYU Stern School of Business Research Paper Series, EC-94-10. SSRN: 1293115.
Hilbe, J. M. (2011). Negative Binomial Regression. Second Edition. Cambridge University Press. doi: 10.1017/cbo9780511973420.
Lambert, D. (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics, 34(1), 1–14. doi: 10.2307/1269547.
\[ \begin{aligned} \mathrm{P} [Y = y | r_1, r_2] &= \exp(-r_1 - r_2) \left( \frac{r_1}{r_2} \right)^{\frac{y}{2}} I_y \left( 2 \sqrt{r_1 r_2} \right) \end{aligned} \]
\[ \begin{aligned} \mathrm{E}[Y] &= r_1 - r_2 \\ \mathrm{var}[Y] &= r_1 + r_2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{r_1} (y; r_1, r_2) &= \sqrt{\frac{r_2}{r_1}} \frac{I_{y-1} \left( 2 \sqrt{r_1 r_2} \right)}{I_y \left( 2 \sqrt{r_1 r_2} \right) } - 1 \\ \nabla_{r_2} (y; r_1, r_2) &= \sqrt{\frac{r_1}{r_2}} \frac{I_{y-1} \left( 2 \sqrt{r_1 r_2} \right)}{I_y \left( 2 \sqrt{r_1 r_2} \right) } -\frac{y}{r_2} - 1 \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{r_1, r_1} (r_1, r_2) &\approx \frac{r_2}{r_1} \left( \frac{I_{r_1 - r_2 - 1} \left(2 \sqrt{r_1 r_2} \right) }{I_{r_1 - r_2} \left(2 \sqrt{r_1 r_2} \right) } \right)^2 - 2 \sqrt{\frac{r_2}{r_1}} \frac{I_{r_1 - r_2 - 1} \left(2 \sqrt{r_1 r_2} \right) }{I_{r_1 - r_2} \left(2 \sqrt{r_1 r_2} \right) } + 1 \\ \mathcal{I}_{r_1, r_2} (r_1, r_2) &\approx \left( \frac{I_{r_1 - r_2 - 1} \left(2 \sqrt{r_1 r_2} \right) }{I_{r_1 - r_2} \left(2 \sqrt{r_1 r_2} \right) } \right)^2 - 2 \sqrt{\frac{r_1}{r_2}} \frac{I_{r_1 - r_2 - 1} \left(2 \sqrt{r_1 r_2} \right) }{I_{r_1 - r_2} \left(2 \sqrt{r_1 r_2} \right) } + \frac{r_1}{r_2} \\ \mathcal{I}_{r_2, r_2} (r_1, r_2) &\approx \frac{r_1}{r_2} \left( \frac{I_{r_1 - r_2 - 1} \left(2 \sqrt{r_1 r_2} \right) }{I_{r_1 - r_2} \left(2 \sqrt{r_1 r_2} \right) } \right)^2 - 2 \left( \frac{r_1}{r_2} \right)^{\frac{3}{2}} \frac{I_{r_1 - r_2 - 1} \left(2 \sqrt{r_1 r_2} \right) }{I_{r_1 - r_2} \left(2 \sqrt{r_1 r_2} \right) } + \left( \frac{r_1}{r_2} \right)^2 \\ \end{aligned} \]
\[ \mathrm{P} [Y = y | m, s] = \exp(-|m| - s) \left( \frac{|m| + m + s}{|m| - m + s} \right)^{\frac{y}{2}} I_y \left( \sqrt{s^2 + 2 |m| s} \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= m \\ \mathrm{var}[Y] &= |m| + s \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s) &= \frac{y}{2|m| + s} + \frac{\mathrm{sgn}(m) s}{2 \sqrt{s^2 + 2 |m| s}} \frac{ I_{y-1} \left( \sqrt{s^2 + 2 |m| s} \right) + I_{y+1} \left( \sqrt{s^2 + 2 |m| s} \right) }{ I_y \left( \sqrt{s^2 + 2 |m| s} \right) } - \mathrm{sgn}(m) \\ \nabla_{s} (y; m, s) &= - \frac{m y}{s^2 + 2 |m| s} + \frac{|m| + s}{2 \sqrt{s^2 + 2 |m| s}} \frac{ I_{y-1} \left( \sqrt{s^2 + 2 |m| s} \right) + I_{y+1} \left( \sqrt{s^2 + 2 |m| s} \right) }{ I_y \left( \sqrt{s^2 + 2 |m| s} \right) } - 1 \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s) &\approx \frac{s^2}{4 \left( s^2 + 2|m|s \right)} \left( \frac{2 (|m| + s)}{\sqrt{s^2 + 2 |m| s}} - \frac{ I_{m-1} \left( \sqrt{s^2 + 2 |m| s} \right) + I_{m+1} \left( \sqrt{s^2 + 2 |m| s} \right) }{ I_m \left( \sqrt{s^2 + 2 |m| s} \right)} \right)^2 \\ \mathcal{I}_{m, s} (m, s) &\approx \frac{\mathrm{sgn}(m) (|m| + s) s}{4 \left( s^2 + 2|m|s \right)} \left( \frac{2 (|m| + s)}{\sqrt{s^2 + 2 |m| s}} - \frac{ I_{m-1} \left( \sqrt{s^2 + 2 |m| s} \right) + I_{m+1} \left( \sqrt{s^2 + 2 |m| s} \right) }{ I_m \left( \sqrt{s^2 + 2 |m| s} \right)} \right)^2 \\ \mathcal{I}_{s, s} (m, s) &\approx \frac{(|m| + s)^2}{4 \left( s^2 + 2|m|s \right)} \left( \frac{2 (|m| + s)}{\sqrt{s^2 + 2 |m| s}} - \frac{ I_{m-1} \left( \sqrt{s^2 + 2 |m| s} \right) + I_{m+1} \left( \sqrt{s^2 + 2 |m| s} \right) }{ I_m \left( \sqrt{s^2 + 2 |m| s} \right)} \right)^2 \\ \end{aligned} \]
\[ \mathrm{P} [Y = y | m, s] = \exp(-s) \left( \frac{s + m}{s - m} \right)^{\frac{y}{2}} I_y \left( \sqrt{s^2 - m^2} \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= m \\ \mathrm{var}[Y] &= s \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s) &= \frac{s y}{s^2 - m^2} - \frac{m}{2 \sqrt{s^2 - m^2}} \frac{ I_{y-1} \left( \sqrt{s^2 - m^2} \right) + I_{y+1} \left( \sqrt{s^2 - m^2} \right) }{ I_y \left( \sqrt{s^2 - m^2} \right) } \\ \nabla_{s} (y; m, s) &= -\frac{m y}{s^2 - m^2} + \frac{s}{2 \sqrt{s^2 - m^2}} \frac{ I_{y-1} \left( \sqrt{s^2 - m^2} \right) + I_{y+1} \left( \sqrt{s^2 - m^2} \right) }{ I_y \left( \sqrt{s^2 - m^2} \right) } - 1\\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s) &\approx \frac{m^2}{4 \left( s^2 - m^2 \right)} \left( \frac{2 s}{\sqrt{s^2 - m^2}} - \frac{ I_{m-1} \left( \sqrt{s^2 - m^2} \right) + I_{m+1} \left( \sqrt{s^2 - m^2} \right) }{ I_m \left( \sqrt{s^2 - m^2} \right) } \right)^2 \\ \mathcal{I}_{m, s} (m, s) &\approx - \frac{m s}{4 \left( s^2 - m^2 \right)} \left( \frac{2 s}{\sqrt{s^2 - m^2}} - \frac{ I_{m-1} \left( \sqrt{s^2 - m^2} \right) + I_{m+1} \left( \sqrt{s^2 - m^2} \right) }{ I_m \left( \sqrt{s^2 - m^2} \right) } \right)^2 \\ \mathcal{I}_{s, s} (m, s) &\approx \frac{s^2}{4 \left( s^2 - m^2 \right)} \left( \frac{2 s}{\sqrt{s^2 - m^2}} - \frac{ I_{m-1} \left( \sqrt{s^2 - m^2} \right) + I_{m+1} \left( \sqrt{s^2 - m^2} \right) }{ I_m \left( \sqrt{s^2 - m^2} \right) } \right)^2 \\ \end{aligned} \]
Alzaid, A. A. and Omair, M. A. (2010). On the Poisson Difference Distribution Inference and Applications. Bulletin of the Malaysian Mathematical Sciences Society, 33(1), 17–45. EuDML: 244475.
Karlis, D. and Ntzoufras, I. (2009). Bayesian Modelling of Football Outcomes: Using the Skellam’s Distribution for the Goal Difference. IMA Journal of Management Mathematics, 20(2), 133–145. doi: 10.1093/imaman/dpn026.
Koopman, S. J. and Lit, R. (2019). Forecasting Football Match Results in National League Competitions Using Score-Driven Time Series Models. International Journal of Forecasting, 35(2), 797–809. doi: 10.1016/j.ijforecast.2018.10.011.
Koopman, S. J., Lit, R., Lucas, A., and Opschoor, A. (2018). Dynamic Discrete Copula Models for High-Frequency Stock Price Changes. Journal of Applied Econometrics, 33(7), 966–985. doi: 10.1002/jae.2645.
Skellam, J. G. (1946). The Frequency Distribution of the Difference Between Two Poisson Variates Belonging to Different Populations. Journal of the Royal Statistical Society, 109(3), 296. doi: 10.2307/2981372.
\[ \begin{aligned} \mathrm{P} [Y = y | r_1, r_2, p] &= \begin{cases} p + (1 - p) \exp(-r_1 - r_2) I_0 \left( 2 \sqrt{r_1 r_2} \right) & \text{ for } y = 0 \\ (1 - p) \exp(-r_1 - r_2) \left( \frac{r_1}{r_2} \right)^{\frac{y}{2}} I_y \left( 2 \sqrt{r_1 r_2} \right) & \text{ for } y \neq 0 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathrm{E}[Y] &= (1 - p) (r_1 - r_2) \\ \mathrm{var}[Y] &= (1 - p) \left( p \left( r_1 - r_2 \right)^2 + r_1 + r_2 \right) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{r_1} (y; r_1, r_2, p) &= \begin{cases} \frac{(p - 1) \left( \sqrt{r_1 r_2} I_0 \left( 2 \sqrt{r_1 r_2} \right) - r_2 I_1 \left( 2 \sqrt{r_1 r_2} \right) \right)}{\sqrt{r_1 r_2} \left( p \exp(r_1 + r_2) + (1 - p) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right)} & \text{ for } y = 0 \\ \sqrt{\frac{r_2}{r_1}} \frac{I_{y-1} \left( 2 \sqrt{r_1 r_2} \right)}{I_y \left( 2 \sqrt{r_1 r_2} \right) } - 1 & \text{ for } y \neq 0 \\ \end{cases} \\ \nabla_{r_2} (y; r_1, r_2, p) &= \begin{cases} \frac{(p - 1) \left( \sqrt{r_1 r_2} I_0 \left( 2 \sqrt{r_1 r_2} \right) - r_1 I_1 \left( 2 \sqrt{r_1 r_2} \right) \right)}{\sqrt{r_1 r_2} \left( p \exp(r_1 + r_2) + (1 - p) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right)} & \text{ for } y = 0 \\ \sqrt{\frac{r_1}{r_2}} \frac{I_{y-1} \left( 2 \sqrt{r_1 r_2} \right)}{I_y \left( 2 \sqrt{r_1 r_2} \right) } -\frac{y}{r_2} - 1 & \text{ for } y \neq 0 \\ \end{cases} \\ \nabla_{p} (y; r_1, r_2, p) &= \begin{cases} \frac{\exp(r_1 + r_2) - I_0 \left( 2 \sqrt{r_1 r_2} \right)}{p \exp(r_1 + r_2) + (1 - p) I_0 \left( 2 \sqrt{r_1 r_2} \right)} & \text{ for } y = 0 \\ \frac{1}{p - 1} & \text{ for } y \neq 0 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{r_1, r_1} (r_1, r_2, p) &\approx (1 - p) \left( 1 - \exp(-r_1 - r_2) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right) \left( 1 - \sqrt{\frac{r_2}{r_1}} \frac{I_{r_1 - r_2 -1} \left( 2 \sqrt{r_1 r_2} \right)}{I_{r_1 - r_2} \left( 2 \sqrt{r_1 r_2} \right)} \right)^2 \\ & \qquad + \frac{(1 - p)^2 \exp(-r_1 - r_2) \left( \sqrt{r_1 r_2} I_0 \left( 2 \sqrt{r_1 r_2} \right) - r_2 I_1 \left( 2 \sqrt{r_1 r_2} \right) \right)^2}{r_1 r_2 \left( p \exp(r_1 + r_2) + (1 - p) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right)} \\ \mathcal{I}_{r_1, r_2} (r_1, r_2, p) &\approx (1 - p) \left( 1 - \exp(-r_1 - r_2) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right) \left( 1 - \sqrt{\frac{r_2}{r_1}} \frac{I_{r_1 - r_2-1} \left( 2 \sqrt{r_1 r_2} \right)}{I_{r_1 - r_2} \left( 2 \sqrt{r_1 r_2} \right)} \right) \\ & \qquad \times \left( \frac{r_1}{r_2} - \sqrt{\frac{r_1}{r_2}} \frac{I_{r_1 - r_2 - 1} \left( 2 \sqrt{r_1 r_2} \right)}{I_{r_1 - r_2} \left( 2 \sqrt{r_1 r_2} \right)} \right) \\ & \qquad + \frac{(1 - p)^2 \exp(-r_1 - r_2) \left( \sqrt{r_1 r_2} I_0 \left( 2 \sqrt{r_1 r_2} \right) - r_2 I_1 \left( 2 \sqrt{r_1 r_2} \right) \right)}{r_1 r_2 \left( p \exp(r_1 + r_2) + (1 - p) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right)} \\ & \qquad \times \left( \sqrt{r_1 r_2} I_0 \left( 2 \sqrt{r_1 r_2} \right) - r_1 I_1 \left( 2 \sqrt{r_1 r_2} \right) \right) \\ \mathcal{I}_{r_1, p} (r_1, r_2, p) &= \frac{(p - 1) \left( 1 - \exp(-r_1 - r_2 ) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right)}{\sqrt{r_1 r_2} \left( p \exp(r_1 + r_2) + (1 - p) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right)} \\ & \qquad \times \left( \sqrt{r_1 r_2} I_0 \left( 2 \sqrt{r_1 r_2} \right) - r_2 I_1 \left( 2 \sqrt{r_1 r_2} \right) \right) \\ \mathcal{I}_{r_2, r_2} (r_1, r_2, p) &\approx (1 - p) \left( 1 - \exp(-r_1 - r_2) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right) \left( \frac{r_1}{r_2} - \sqrt{\frac{r_1}{r_2}} \frac{I_{r_1 - r_2 - 1} \left( 2 \sqrt{r_1 r_2} \right)}{I_{r_1 - r_2} \left( 2 \sqrt{r_1 r_2} \right)} \right)^2 \\ & \qquad + \frac{(1 - p)^2 \exp(-r_1 - r_2) \left( \sqrt{r_1 r_2} I_0 \left( 2 \sqrt{r_1 r_2} \right) - r_1 I_1 \left( 2 \sqrt{r_1 r_2} \right) \right)^2}{r_1 r_2 \left( p \exp(r_1 + r_2) + (1 - p) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right)} \\ \mathcal{I}_{r_2, p} (r_1, r_2, p) &= \frac{(p - 1) \left( 1 - \exp(-r_1 - r_2 ) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right)}{\sqrt{r_1 r_2} \left( p \exp(r_1 + r_2) + (1 - p) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right)} \\ & \qquad \times \left( \sqrt{r_1 r_2} I_0 \left( 2 \sqrt{r_1 r_2} \right) - r_1 I_1 \left( 2 \sqrt{r_1 r_2} \right) \right) \\ \mathcal{I}_{p, p} (r_1, r_2, p) &= \frac{\exp(r_1 + r_2) - I_0 \left( 2 \sqrt{r_1 r_2} \right)}{(1 - p) \left( p \exp(r_1 + r_2) + (1 - p) I_0 \left( 2 \sqrt{r_1 r_2} \right) \right)} \\ \end{aligned} \]
\[ \begin{aligned} \mathrm{P} [Y = y | m, s, p] &= \begin{cases} p + (1 - p) \exp(-|m| - s) I_0 \left( \sqrt{s^2 + 2 |m| s} \right) & \text{ for } y = 0 \\ (1 - p) \exp(-|m| - s) \left( \frac{|m| + m + s}{|m| - m + s} \right)^{\frac{y}{2}} I_y \left( \sqrt{s^2 + 2 |m| s} \right) & \text{ for } y \neq 0 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathrm{E}[Y] &= (1 - p) m \\ \mathrm{var}[Y] &= (1 - p) \left( |m| + s + p m^2 \right) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s, p) &= \begin{cases} \frac{\mathrm{sgn}(m) (p - 1) \left( \sqrt{s^2 + 2 |m| s} I_0 \left( \sqrt{s^2 + 2 |m| s} \right) - s I_1 \left( \sqrt{s^2 + 2 |m| s} \right) \right)}{\sqrt{s^2 + 2 |m| s} \left( (1 - p) I_0 \left( \sqrt{s^2 + 2 |m| s} \right) + p \exp(|m| + s) \right)} & \text{ for } y = 0 \\ \frac{y}{2|m| + s} + \frac{\mathrm{sgn}(m) s}{2 \sqrt{s^2 + 2 |m| s}} \frac{ I_{y-1} \left( \sqrt{s^2 + 2 |m| s} \right) + I_{y+1} \left( \sqrt{s^2 + 2 |m| s} \right) }{ I_y \left( \sqrt{s^2 + 2 |m| s} \right) } - \mathrm{sgn}(m) & \text{ for } y \neq 0 \\ \end{cases} \\ \nabla_{s} (y; m, s, p) &= \begin{cases} \frac{ (p - 1) \left( \sqrt{s^2 + 2 |m| s} I_0 \left( \sqrt{s^2 + 2 |m| s} \right) - (|m| + s) I_1 \left( \sqrt{s^2 + 2 |m| s} \right) \right) }{\sqrt{s^2 + 2 |m| s} \left( (1 - p) I_0 \left( \sqrt{s^2 + 2 |m| s} \right) + p \exp(|m| + s) \right)} & \text{ for } y = 0 \\ - \frac{m y}{s^2 + 2 |m| s} + \frac{|m| + s}{2 \sqrt{s^2 + 2 |m| s}} \frac{ I_{y-1} \left( \sqrt{s^2 + 2 |m| s} \right) + I_{y+1} \left( \sqrt{s^2 + 2 |m| s} \right) }{ I_y \left( \sqrt{s^2 + 2 |m| s} \right) } - 1 & \text{ for } y \neq 0 \\ \end{cases} \\ \nabla_{p} (y; m, s, p) &= \begin{cases} \frac{\exp(|m| + s) - I_0 \left( \sqrt{s^2 + 2 |m| s} \right)}{p \exp(|m| + s) + (1 - p) I_0 \left( \sqrt{s^2 + 2 |m| s} \right)} & \text{ for } y = 0 \\ \frac{1}{p - 1} & \text{ for } y \neq 0 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s, p) &\approx \frac{s^2 (1 - p) \left( 1 - \exp(-|m|-s) I_{0} \left( \sqrt{s^2 + 2 |m| s} \right) \right)}{4 s^2 + 8 |m| s} \\ & \qquad \times \left( \frac{2 (|m| + s)}{\sqrt{s^2 + 2 |m| s}} - \frac{ I_{m-1} \left( \sqrt{s^2 + 2 |m| s} \right) + I_{m+1} \left( \sqrt{s^2 + 2 |m| s} \right) }{ I_m \left( \sqrt{s^2 + 2 |m| s} \right)} \right)^2 \\ & \qquad + \frac{(1 - p)^2 \exp(-|m| - s) }{\left( s^2 + 2 |m| s \right) \left( p \exp(|m| + s) + (1 - p) I_0 \left( \sqrt{s^2 + 2 |m| s} \right) \right)} \\ & \qquad \times \left( \sqrt{s^2 + 2 |m| s} I_0 \left( \sqrt{s^2 + 2 |m| s} \right) - s I_1 \left( \sqrt{s^2 + 2 |m| s} \right) \right)^2 \\ \mathcal{I}_{m, s} (m, s, p) &\approx \frac{\mathrm{sgn}(m) s (1 - p) (|m| + s) \left( 1 - \exp(-|m|-s) I_{0} \left( \sqrt{s^2 + 2 |m| s} \right) \right)}{4 s^2 + 8 |m| s} \\ & \qquad \times \left( \frac{2 (|m| + s)}{\sqrt{s^2 + 2 |m| s}} - \frac{ I_{m-1} \left( \sqrt{s^2 + 2 |m| s} \right) + I_{m+1} \left( \sqrt{s^2 + 2 |m| s} \right) }{ I_m \left( \sqrt{s^2 + 2 |m| s} \right)} \right)^2 \\ & \qquad + \frac{\mathrm{sgn}(m) (1 - p)^2 \exp(-|m| - s)}{\left( s^2 + 2 |m| s \right) \left( p \exp(|m| + s) + (1 - p) I_0 \left( \sqrt{s^2 + 2 |m| s} \right) \right)} \\ & \qquad \times \left( \sqrt{s^2 + 2 |m| s} I_0 \left( \sqrt{s^2 + 2 |m| s} \right) - s I_1 \left( \sqrt{s^2 + 2 |m| s} \right) \right) \\ & \qquad \times \left( \sqrt{s^2 + 2 |m| s} I_0 \left( \sqrt{s^2 + 2 |m| s} \right) - (|m| + s) I_1 \left( \sqrt{s^2 + 2 |m| s} \right) \right) \\ \mathcal{I}_{m, p} (m, s, p) &= \frac{\mathrm{sgn}(m) (p - 1) \left( 1 - \exp(-|m| - s) I_0 \left( \sqrt{s^2 + 2 |m| s} \right) \right)}{\sqrt{s^2 + 2 |m| s} \left( p \exp(|m| + s) + (1 - p) I_0 \left( \sqrt{s^2 + 2 |m| s} \right) \right)} \\ & \qquad \times \left( \sqrt{s^2 + 2 |m| s} I_0 \left( \sqrt{s^2 + 2 |m| s} \right) - s I_1 \left( \sqrt{s^2 + 2 |m| s} \right) \right) \\ \mathcal{I}_{s, s} (m, s, p) &\approx \frac{(1 - p) (|m| + s)^2 \left( 1 - \exp(-|m|-s) I_{0} \left( \sqrt{s^2 + 2 |m| s} \right) \right)}{4 s^2 + 8 |m| s} \\ & \qquad \times \left( \frac{2 (|m| + s)}{\sqrt{s^2 + 2 |m| s}} - \frac{ I_{m-1} \left( \sqrt{s^2 + 2 |m| s} \right) + I_{m+1} \left( \sqrt{s^2 + 2 |m| s} \right) }{ I_m \left( \sqrt{s^2 + 2 |m| s} \right)} \right)^2 \\ & \qquad + \frac{(1 - p)^2 \exp(-|m| - s)}{\left( s^2 + 2 |m| s \right) \left( p \exp(|m| + s) + (1 - p) I_0 \left( \sqrt{s^2 + 2 |m| s} \right) \right)} \\ & \qquad \times \left( \sqrt{s^2 + 2 |m| s} I_0 \left( \sqrt{s^2 + 2 |m| s} \right) - (|m| + s) I_1 \left( \sqrt{s^2 + 2 |m| s} \right) \right)^2 \\ \mathcal{I}_{s, p} (m, s, p) &= \frac{(p - 1) \left( 1 - \exp(-|m| - s) I_0 \left( \sqrt{s^2 + 2 |m| s} \right) \right)}{\sqrt{s^2 + 2 |m| s} \left( p \exp(|m| + s) + (1 - p) I_0 \left( \sqrt{s^2 + 2 |m| s} \right) \right)} \\ & \qquad \times \left( \sqrt{s^2 + 2 |m| s} I_0 \left( \sqrt{s^2 + 2 |m| s} \right) - (|m| + s) I_1 \left( \sqrt{s^2 + 2 |m| s} \right) \right) \\ \mathcal{I}_{p, p} (m, s, p) &= \frac{\exp(|m| + s) - I_0 \left( \sqrt{s^2 + 2 |m| s} \right)}{(1 - p) \left( p \exp(|m| + s) + (1 - p) I_0 \left( \sqrt{s^2 + 2 |m| s} \right) \right)} \\ \end{aligned} \]
\[ \begin{aligned} \mathrm{P} [Y = y | m, s, p] &= \begin{cases} p + (1 - p) \exp(-s) I_0 \left( \sqrt{s^2 - m^2} \right) & \text{ for } y = 0 \\ (1 - p) \exp(-s) \left( \frac{s + m}{s - m} \right)^{\frac{y}{2}} I_y \left( \sqrt{s^2 - m^2} \right) & \text{ for } y \neq 0 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathrm{E}[Y] &= (1 - p) m \\ \mathrm{var}[Y] &= (1 - p) \left( s + p m^2 \right) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s, p) &= \begin{cases} \frac{m (p - 1) I_{1} \left( \sqrt{s^2 - m^2} \right)}{\sqrt{s^2 - m^2} \left( p \exp(s) + (1 - p) I_{0} \left( \sqrt{s^2 - m^2} \right) \right)} & \text{ for } y = 0 \\ \frac{s y}{s^2 - m^2} - \frac{m}{2 \sqrt{s^2 - m^2}} \frac{ I_{y-1} \left( \sqrt{s^2 - m^2} \right) + I_{y+1} \left( \sqrt{s^2 - m^2} \right) }{ I_y \left( \sqrt{s^2 - m^2} \right) } & \text{ for } y \neq 0 \\ \end{cases} \\ \nabla_{s} (y; m, s, p) &= \begin{cases} \frac{ (p - 1) \left( \sqrt{s^2 - m^2} I_{0} \left( \sqrt{s^2 - m^2} \right) - s I_{1} \left( \sqrt{s^2 - m^2} \right) \right) }{\sqrt{s^2 - m^2} \left( p \exp(s) + (1 - p) I_{0} \left( \sqrt{s^2 - m^2} \right) \right)} & \text{ for } y = 0 \\ -\frac{m y}{s^2 - m^2} + \frac{s}{2 \sqrt{s^2 - m^2}} \frac{ I_{y-1} \left( \sqrt{s^2 - m^2} \right) + I_{y+1} \left( \sqrt{s^2 - m^2} \right) }{ I_y \left( \sqrt{s^2 - m^2} \right) } - 1 & \text{ for } y \neq 0 \\ \end{cases} \\ \nabla_{p} (y; m, s, p) &= \begin{cases} \frac{\exp(s) - I_{0} \left( \sqrt{s^2 - m^2} \right)}{p \exp(s) + (1 - p) I_{0} \left( \sqrt{s^2 - m^2} \right)} & \text{ for } y = 0 \\ \frac{1}{p - 1} & \text{ for } y \neq 0 \\ \end{cases} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s, p) &\approx \frac{m^2 (1 - p) \left( 1 - \exp(-s) I_{0} \left( \sqrt{s^2 - m^2} \right) \right)}{4 \left( s^2 - m^2 \right)} \\ & \qquad \times \left( \frac{2 s}{\sqrt{s^2 - m^2}} - \frac{ I_{m-1} \left( \sqrt{s^2 - m^2} \right) + I_{m+1} \left( \sqrt{s^2 - m^2} \right) }{ I_m \left( \sqrt{s^2 - m^2} \right) } \right)^2 \\ & \qquad + \frac{m^2 (1 - p)^2 \exp(-s) I_{1} \left( \sqrt{s^2 - m^2} \right)^2}{\left( s^2 - m^2 \right) \left( p \exp(s) + (1 - p) I_0 \left( \sqrt{s^2 - m^2} \right) \right)} \\ \mathcal{I}_{m, s} (m, s, p) &\approx \frac{m s (p - 1) \left( 1 - \exp(-s) I_{0} \left( \sqrt{s^2 - m^2} \right) \right) }{4 \left( s^2 - m^2 \right)} \\ & \qquad \times \left( \frac{2 s}{\sqrt{s^2 - m^2}} - \frac{ I_{m-1} \left( \sqrt{s^2 - m^2} \right) + I_{m+1} \left( \sqrt{s^2 - m^2} \right) }{ I_m \left( \sqrt{s^2 - m^2} \right) } \right)^2 \\ & \qquad + \frac{m (1 - p)^2 \exp(-s) I_{1} \left( \sqrt{s^2 - m^2} \right)}{\left( s^2 - m^2 \right) \left( p \exp(s) + (1 - p) I_0 \left( \sqrt{s^2 - m^2} \right) \right)} \\ & \qquad \times \left( \sqrt{s^2 - m^2} I_0 \left( \sqrt{s^2 - m^2} \right) - s I_1 \left( \sqrt{s^2 - m^2} \right) \right) \\ \mathcal{I}_{m, p} (m, s, p) &= \frac{m (p - 1) \left( 1 - \exp(-s) I_0 \left( \sqrt{s^2 - m^2} \right) \right) I_1 \left( \sqrt{s^2 - m^2} \right)}{\sqrt{s^2 - m^2} \left( p \exp(s) + (1 - p) I_0 \left( \sqrt{s^2 - m^2} \right) \right)} \\ \mathcal{I}_{s, s} (m, s, p) &\approx \frac{s^2 (1 - p) \left( 1 - \exp(-s) I_{0} \left( \sqrt{s^2 - m^2} \right) \right)}{4 \left( s^2 - m^2 \right)} \\ & \qquad \times \left( \frac{2 s}{\sqrt{s^2 - m^2}} - \frac{ I_{m-1} \left( \sqrt{s^2 - m^2} \right) + I_{m+1} \left( \sqrt{s^2 - m^2} \right) }{ I_m \left( \sqrt{s^2 - m^2} \right) } \right)^2 \\ & \qquad + \frac{(1 - p)^2 \exp(-s) \left( \sqrt{s^2 - m^2} I_0 \left( \sqrt{s^2 - m^2} \right) - s I_1 \left( \sqrt{s^2 - m^2} \right) \right)^2}{\left( s^2 - m^2 \right) \left( p \exp(s) + (1 - p) I_0 \left( \sqrt{s^2 - m^2} \right) \right)} \\ \mathcal{I}_{s, p} (m, s, p) &= \frac{(p - 1) \left( 1 - \exp(-s) I_0 \left( \sqrt{s^2 - m^2} \right) \right) }{\sqrt{s^2 - m^2} \left( p \exp(s) + (1 - p) I_0 \left( \sqrt{s^2 - m^2} \right) \right)} \\ & \qquad \times \left( \sqrt{s^2 - m^2} I_0 \left( \sqrt{s^2 - m^2} \right) - s I_1 \left( \sqrt{s^2 - m^2} \right) \right) \\ \mathcal{I}_{p, p} (m, s, p) &= \frac{\exp(s) - I_0 \left( \sqrt{s^2 - m^2} \right)}{(1 - p) \left( p \exp(s) + (1 - p) I_0 \left( \sqrt{s^2 - m^2} \right) \right) } \\ \end{aligned} \]
\[ f(y | m, v) = \frac{1}{2 \pi I_0(v)} \exp \left( v \cos(y - m) \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= m \\ \mathrm{var}[Y] &= 1 - \frac{I_1(v)}{I_0(v)} \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, v) &= v \sin(y - m) \\ \nabla_{v} (y; m, v) &= \cos(y - m) - \frac{I_1(v)}{I_0(v)} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, v) &= v \frac{I_1(v)}{I_0(v)} \\ \mathcal{I}_{m, v} (m, v) &= 0 \\ \mathcal{I}_{v, v} (m, v) &= \frac{1}{2} - \left( \frac{I_1(v)}{I_0(v)} \right)^2 + \frac{I_2(v)}{2 I_0(v)} \\ \end{aligned} \]
\[ f(y | a_1, a_2) = \frac{1}{B(a_1, a_2)} y^{a_1 - 1} (1 - y)^{a_2 - 1} \]
\[ \begin{aligned} \mathrm{E}[Y] &= \frac{a_1}{a_1 + a_2} \\ \mathrm{var}[Y] &= \frac{a_1 a_2}{(a_1 + a_2)^2 (a_1 + a_2 + 1)} \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{a} (y; a_1, a_2) &= \psi_0(a_1 + a_2) - \psi_0(a_1) + \ln(y) \\ \nabla_{b} (y; a_1, a_2) &= \psi_0(a_1 + a_2) - \psi_0(a_2) + \ln(1 - y) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{a_1, a_1} (a_1, a_2) &= \psi_1(a_1) - \psi_1(a_1 + a_2) \\ \mathcal{I}_{a_1, a_2} (a_1, a_2) &= -\psi_1(a_1 + a_2) \\ \mathcal{I}_{a_2, a_2} (a_1, a_2) &= \psi_1(a_2) - \psi_1(a_1 + a_2) \\ \end{aligned} \]
\[ f(y | m, v) = \frac{1}{B(m v, (1 - m) v)} y^{m v - 1} (1 - y)^{(1 - m) v - 1} \]
\[ \begin{aligned} \mathrm{E}[Y] &= m \\ \mathrm{var}[Y] &= \frac{m (1 - m)}{v + 1} \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, v) &= \frac{v}{1 - m} (\psi_0(v) - \psi_0(m v) + \ln(y)) \\ \nabla_{v} (y; m, v) &= \psi_0(v) - \psi_0(v - m v) + \ln(1 - y) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, v) &= \frac{v^2}{(1 - m)^2} (\psi_1(m v) - \psi_1(v)) \\ \mathcal{I}_{m, v} (m, v) &= \frac{v}{m - 1} \psi_1(v) \\ \mathcal{I}_{v, v} (m, v) &= \psi_1(v - m v) - \psi_1(v) \\ \end{aligned} \]
\[ f(y | m, s) = \frac{1}{B \left( m \left( \frac{m - m^2}{s} - 1 \right), (1 - m) \left( \frac{m - m^2}{s} - 1 \right) \right)} y^{m \left( \frac{m - m^2}{s} - 1 \right) - 1} (1 - y)^{(1 - m) \left( \frac{m - m^2}{s} - 1 \right) - 1} \]
\[ \begin{aligned} \mathrm{E}[Y] &= m \\ \mathrm{var}[Y] &= s \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s) &= \frac{m^2 - m + s}{(m - 1) s} \left( \psi_0 \left( \frac{m - m^2}{s} - 1 \right) - \psi_0 \left( m \left( \frac{m - m^2}{s} - 1 \right) \right) + \ln(y) \right) \\ \nabla_{s} (y; m, s) &= \frac{s^2 (3 m^2 - 2 m + s)}{m (m - 1) (m^2 - m + s)} \left( \psi_0 \left( \frac{m - m^2}{s} - 1 \right) - \psi_0 \left( (1 - m) \left( \frac{m - m^2}{s} - 1 \right) \right) + \ln(1 - y) \right) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s) &= \frac{(m^2 - m + s)^2}{(m - 1)^2 s^2} \left( \psi_1 \left( m \left( \frac{m - m^2}{s} - 1 \right) \right) - \psi_1 \left( \frac{m - m^2}{s} - 1 \right) \right) \\ \mathcal{I}_{m, s} (m, s) &= \frac{s (2 m - 3 m^2 - s)}{m (m^2 - 2 m + 1)} \psi_1 \left( \frac{m - m^2}{s} - 1 \right) \\ \mathcal{I}_{s, s} (m, s) &= \frac{s^2 (3 m^2 - 2 m + s)^2}{(m - 1)^4 m^2} \left( \psi_1 \left( (1 - m) \left( \frac{m - m^2}{s} - 1 \right) \right) - \psi_1 \left( \frac{m - m^2}{s} - 1 \right) \right) \\ \end{aligned} \]
\[ f(y | a, b) = a b y^{a - 1} \left(1 - y^a \right)^{b - 1} \]
\[ \begin{aligned} \mathrm{E}[Y] &= b B \left(1 + \frac{1}{a}, b \right) \\ \mathrm{var}[Y] &= b B \left(1 + \frac{2}{a}, b \right) - b^2 B \left(1 + \frac{1}{a}, b \right)^2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{a} (y; a, b) &= \frac{(b - 1) \ln(y)}{y^a - 1} + b \ln(y) + \frac{1}{a} \\ \nabla_{b} (y; a, b) &= \ln \left( 1 - y^a \right) + \frac{1}{b} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{a, a} (a, b) &= \frac{1}{a^2} + \frac{b}{a^2 (b - 2)} \left( \left(\psi_0(b) - \psi_0(2) \right)^2 - \left( \psi_1(b) - \psi_1(2) \right) \right) \\ \mathcal{I}_{a, b} (a, b) &= - \frac{\psi_0(b + 1) - \psi_0(2)}{a (b - 1)} \\ \mathcal{I}_{b, b} (a, b) &= \frac{1}{b^2} \\ \end{aligned} \]
\[ f(y | m, s) = \frac{1}{y (1 - y)}\frac{1}{\sqrt{2 \pi s}} \exp \left( - \frac{1}{2 s} \left( \ln \left( \frac{y}{1-y} \right) - m \right)^2 \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &\approx \frac{1}{K - 1} \sum_{k = 1}^{K - 1} \frac{1}{1 + \exp( - \Phi^{-1}_{m,s} (k / K)} \\ \mathrm{var}[Y] &\approx \frac{1}{K - 1} \sum_{k = 1}^{K - 1} \left( \frac{1}{1 + \exp( - \Phi^{-1}_{m,s} (k / K)} \right)^2 - \left( \frac{1}{K - 1} \sum_{k = 1}^{K - 1} \frac{1}{1 + \exp( - \Phi^{-1}_{m,s} (k / K)} \right)^2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s) &= \frac{1}{s} \left( \ln \left( \frac{y}{1-y} \right) - m \right) \\ \nabla_{s} (y; m, s) &= \frac{1}{2 s^2} \left( \ln \left( \frac{y}{1-y} \right) - m \right)^2 - \frac{1}{2s} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s) &= \frac{1}{s} \\ \mathcal{I}_{m, s} (m, s) &= 0 \\ \mathcal{I}_{s, s} (m, s) &= \frac{1}{2 s^2} \\ \end{aligned} \]
\[ f(\boldsymbol{y} | \boldsymbol{a}) = \frac{1}{B(\boldsymbol{a})} \prod_{i=1}^n y_i^{a_i - 1} \]
\[ \begin{aligned} \mathrm{E}[\boldsymbol{Y}] &= \frac{1}{\sum_{i=1}^n a_i} \boldsymbol{a} \\ \mathrm{var}[\boldsymbol{Y}] &= \frac{1}{1 + \sum_{i=1}^n a_i} \left( \frac{1}{\sum_{i=1}^n a_i} \mathrm{diag}(\boldsymbol{a}) - \frac{1}{\left( \sum_{i=1}^n a_i \right)^2} \boldsymbol{a} \boldsymbol{a}^\intercal \right) \\ \end{aligned} \]
\[ \nabla_{\boldsymbol{a}} (\boldsymbol{y}; \boldsymbol{a}) = \ln(\boldsymbol{y}) - \psi_0 (\boldsymbol{a}) + \psi_0 \left( \sum_{i=1}^n a_i \right) \\ \]
\[ \mathcal{I}_{\boldsymbol{a}, \boldsymbol{a}} (\boldsymbol{a}) = \mathrm{diag} \left( \psi_1 \left( \boldsymbol{a} \right) \right) - \psi_1 \left( \sum_{i=1}^n a_i \right) \\ \]
\[ f(y | s, a) = \frac{\sqrt{\frac{s}{y}} \left( 1 + \frac{s}{y} \right)}{2 a s \sqrt{2 \pi}} \exp \left( \frac{2 - \frac{y}{s} - \frac{s}{y}}{2 a^2} \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= s \left( 1 + \frac{a^2}{2} \right) \\ \mathrm{var}[Y] &= s^2 a^2 \left( 1 + \frac{5 a^2}{4} \right) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{s} (y; s, a) &= \frac{y}{2 a^2 s^2} - \frac{1}{2 a^2 y} + \frac{1}{s + y} - \frac{1}{2 s} \\ \nabla_{a} (y; s, a) &= \frac{y}{a^3 s} + \frac{s}{a^3 y} - \frac{2 + a^2}{a^3} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{s, s} (s, a) &= \frac{1}{a^2 s^2} \left( 1 + \frac{a}{\sqrt{2 \pi}} \left( a \sqrt{\frac{\pi}{2}} - \pi \exp \left( \frac{2}{a^2} \right) \left(1 - \Phi \left( \frac{2}{a} \right) \right) \right) \right) \\ \mathcal{I}_{s, a} (s, a) &= 0 \\ \mathcal{I}_{a, a} (s, a) &= \frac{2}{a^2} \\ \end{aligned} \]
\[ f(y | s, a, b) = \frac{a b}{s} \left( \frac{y}{s} \right)^{a - 1} \left( 1 + \left( \frac{y}{s} \right)^a \right)^{-b - 1} \]
\[ \begin{aligned} \mathrm{E}[Y] &= s b B \left( b - \frac{1}{a}, 1 + \frac{1}{a} \right), & \quad \text{for } a &> 1 \\ \mathrm{var}[Y] &= s^2 b B \left( b - \frac{2}{a}, 1 + \frac{2}{a} \right) - s^2 b^2 B \left( b - \frac{1}{a}, 1 + \frac{1}{a} \right)^2, & \quad \text{for } a &> 2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{s} (y; s, a, b) &= \frac{a}{s} \left(b \left (\frac{y}{s} \right)^a - 1 \right) \left( \left( \frac{y}{s} \right)^a + 1 \right)^{-1} \\ \nabla_{a} (y; s, a, b) &= \frac{1}{a} - \left( b \left( \frac{y}{s} \right)^a - 1 \right) \ln \left( \frac{y}{s} \right) \left( \left( \frac{y}{s} \right)^a + 1 \right)^{-1} \\ \nabla_{b} (y; s, a, b) &= \frac{1}{b} - \ln \left( \left( \frac{y}{s} \right)^a + 1 \right) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{s, s} (s, a, b) &= \frac{a^2 b}{s^2 (b + 2)} \\ \mathcal{I}_{s, a} (s, a, b) &= - \frac{b ( 1 - \gamma - \psi_0(b + 1))}{s (b + 2)} \\ \mathcal{I}_{s, b} (s, a, b) &= - \frac{a}{s (b + 1)} \\ \mathcal{I}_{a, a} (s, a, b) &= \frac{1}{\alpha^2} \left( 1 + \frac{b}{b + 2} \left( \frac{\pi^2}{6} + \gamma^2 - 2 \gamma + 2 (\gamma - 1) \psi_0(b + 1) + \psi_0(b + 1)^2 + \psi_1(b + 1) \right) \right) \\ \mathcal{I}_{a, b} (s, a, b) &= \frac{1 - \gamma - \psi_0(b)}{a (b + 1)} \\ \mathcal{I}_{b, b} (s, a, b) &= \frac{1}{b^2} \\ \end{aligned} \]
\[ f(y | r) = r \exp \left( -r y \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= \frac{1}{r} \\ \mathrm{var}[Y] &= \frac{1}{r^2} \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{r} (y; r) &= \frac{1}{r} - y \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{r, r} (r) &= \frac{1}{r^2} \\ \end{aligned} \]
\[ f(y | s) = \frac{1}{s} \exp \left( - \frac{y}{s} \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= s \\ \mathrm{var}[Y] &= s^2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{s} (y; s) &= \frac{y - s}{s^2} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{s, s} (s) &= \frac{1}{s^2} \\ \end{aligned} \]
\[ f(y | r, p) = \frac{r}{- \ln(p)} \frac{(1 - p) \exp(-r y)}{1 - (1 - p) \exp(-r y)} \]
\[ \begin{aligned} \mathrm{E}[Y] &= - \frac{\mathrm{Li}_2(1 - p)}{r \ln(p)} \\ \mathrm{var}[Y] &= - 2 \frac{\mathrm{Li}_3(1 - p)}{r^2 \ln(p)} - \left( \frac{\mathrm{Li}_2(1 - p)}{r \ln(p)} \right)^2 \end{aligned} \]
\[ \begin{aligned} \nabla_{r} (y; r, p) &= \frac{1}{r} - y - \frac{y (1 - p) \exp(-r y)}{1 - (1 - p) \exp(-r y)} \\ \nabla_{p} (y; r, p) &= -\frac{1}{p log(p)} - \frac{1}{1 - p} - \frac{\exp(-r y)}{1 - (1 - p) \exp(-r y)} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{r, r} (r, p) &= -\frac{\mathrm{Li}_2(1 - p)}{r^2 \ln(p)} \\ \mathcal{I}_{r, p} (r, p) &= \frac{1 - p + p \ln(p)}{2 r p (1 - p) \ln(p)} \\ \mathcal{I}_{p, p} (r, p) &= \frac{1}{(1 - p)^2} - \frac{\ln(p) + 1}{(p \ln(p))^2} + \frac{1 - 4 p + 3 p^2 - 2 p^2 \ln(p)}{2 p^2 (1 - p)^2 \ln(p)} \\ \end{aligned} \]
\[ f(y | s, a) = \frac{a}{s} \left( \frac{y}{s} \right)^{a - 1} \left( 1 + \left ( \frac{y}{s} \right)^a \right)^{-2} \]
\[ \begin{aligned} \mathrm{E}[Y] &= s \frac{\pi / a}{\sin(\pi / a)}, & \quad \text{for } a &> 1 \\ \mathrm{var}[Y] &= s^2 \left( \frac{2 \pi / a}{\sin(2 \pi / a)} - \frac{\pi^2 / a^2}{\sin(\pi / a)^2} \right), & \quad \text{for } a &> 2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{s} (y; s, a) &= \frac{a}{s} \left( \left( \frac{y}{s} \right)^a - 1 \right) \left( \left( \frac{y}{s} \right)^a + 1 \right)^{-1} \\ \nabla_{a} (y; s, a) &= \frac{1}{a} - \left( \left( \frac{y}{s} \right)^a - 1 \right) \ln \left( \frac{y}{s} \right) \left( \left( \frac{y}{s} \right)^a + 1 \right)^{-1} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{s, s} (s, a) &= \frac{a^2}{3 s^2} \\ \mathcal{I}_{s, a} (s, a) &= 0 \\ \mathcal{I}_{a, a} (s, a) &= \frac{\pi^2 + 3}{9 a^2} \\ \end{aligned} \]
\[ f(y | r, a) = \frac{r}{\Gamma(a)} (r y)^{a - 1} \exp \left( -r y \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= \frac{a}{r} \\ \mathrm{var}[Y] &= \frac{a}{r^2} \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{r} (y; r, a) &= \frac{a - r y}{r} \\ \nabla_{a} (y; r, a) &= \ln(r y) - \psi_0(a) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{r, r} (r, a) &= \frac{a}{r^2} \\ \mathcal{I}_{r, a} (r, a) &= - \frac{1}{r} \\ \mathcal{I}_{a, a} (r, a) &= \psi_1(a) \\ \end{aligned} \]
\[ f(y | s, a) = \frac{1}{\Gamma(a)} \frac{1}{s} \left( \frac{y}{s} \right)^{a - 1} \exp \left( - \frac{y}{s} \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= a s \\ \mathrm{var}[Y] &= a s^2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{s} (y; s, a) &= \frac{y - a s}{s^2} \\ \nabla_{a} (y; s, a) &= \ln \left( \frac{y}{s} \right) - \psi_0(a) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{s, s} (s, a) &= \frac{a}{s^2} \\ \mathcal{I}_{s, a} (s, a) &= \frac{1}{s} \\ \mathcal{I}_{a, a} (s, a) &= \psi_1(a) \\ \end{aligned} \]
\[ f(y | r, a, b) = \frac{r b}{\Gamma(a)} (r y)^{a b - 1} \exp \left( -(r y)^b \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= \frac{1}{r} \frac{\Gamma \left(a + b^{-1} \right)}{\Gamma \left( a \right) } \\ \mathrm{var}[Y] &= \frac{1}{r^2} \left( \frac{\Gamma \left(a + 2 b^{-1} \right)}{\Gamma \left( a \right) } - \left( \frac{\Gamma \left(a + b^{-1} \right)}{\Gamma \left( a \right) } \right)^2 \right) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{r} (y; r, a, b) &= \frac{b}{r} \left( a - (r y)^b \right) \\ \nabla_{a} (y; r, a, b) &= b \ln(r y) - \psi_0(a) \\ \nabla_{b} (y; r, a, b) &= \left( a - (r y)^b \right) \ln (r y) + \frac{1}{b} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{r, r} (r, a, b) &= \frac{a b^2}{r^2} \\ \mathcal{I}_{r, a} (r, a, b) &= - \frac{b}{r} \\ \mathcal{I}_{r, b} (r, a, b) &= \frac{a \psi_0(a) + 1}{r} \\ \mathcal{I}_{a, a} (r, a, b) &= \psi_1(a) \\ \mathcal{I}_{a, b} (r, a, b) &= - \frac{\psi_0(a)}{b} \\ \mathcal{I}_{b, b} (r, a, b) &= \frac{a \psi_0(a)^2 + 2 \psi_0(a) + a \psi_1(a) + 1}{b^2} \\ \end{aligned} \]
\[ f(y | s, a, b) = \frac{1}{\Gamma(a)} \frac{b}{s} \left( \frac{y}{s} \right)^{a b - 1} \exp \left( - \left( \frac{y}{s} \right)^b \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= s \frac{\Gamma \left(a + b^{-1} \right)}{\Gamma \left( a \right) } \\ \mathrm{var}[Y] &= s^2 \left( \frac{\Gamma \left(a + 2 b^{-1} \right)}{\Gamma \left( a \right) } - \left( \frac{\Gamma \left(a + b^{-1} \right)}{\Gamma \left( a \right) } \right)^2 \right) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{s} (y; s, a, b) &= \frac{b}{s} \left( \left( \frac{y}{s} \right)^b - a \right) \\ \nabla_{a} (y; s, a, b) &= b \ln \left( \frac{y}{s} \right) - \psi_0(a) \\ \nabla_{b} (y; s, a, b) &= \left( a - \left( \frac{y}{s} \right)^b \right) \ln \left( \frac{y}{s} \right) + \frac{1}{b} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{s, s} (s, a, b) &= \frac{a b^2}{s^2} \\ \mathcal{I}_{s, a} (s, a, b) &= \frac{b}{s} \\ \mathcal{I}_{s, b} (s, a, b) &= - \frac{a \psi_0(a) + 1}{s} \\ \mathcal{I}_{a, a} (s, a, b) &= \psi_1(a) \\ \mathcal{I}_{a, b} (s, a, b) &= - \frac{\psi_0(a)}{b} \\ \mathcal{I}_{b, b} (s, a, b) &= \frac{a \psi_0(a)^2 + 2 \psi_0(a) + a \psi_1(a) + 1}{b^2} \\ \end{aligned} \]
Park, T. R. (2014). Derivation of the Fisher Information Matrix for 4-Parameter Generalized Gamma Distribution Using Mathematica. Journal of the Chosun Natural Science, 7(2), 138–144. doi: 10.13160/ricns.2014.7.2.138.
Stacy, E. W. (1962). A Generalization of the Gamma Distribution. The Annals of Mathematical Statistics, 33(3), 1187–1192. doi: 10.1214/aoms/1177704481.
Tomanová, P. and Holý, V. (2021). Clustering of Arrivals in Queueing Systems: Autoregressive Conditional Duration Approach. Central European Journal of Operations Research, 29(3), 859–874. doi: 10.1007/s10100-021-00744-7.
\[ f(y | m, s) = \frac{1}{y}\frac{1}{\sqrt{2 \pi s}} \exp \left( - \frac{\left( \ln(y) - m \right)^2}{2 s} \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= \exp \left( m + \frac{s}{2} \right) \\ \mathrm{var}[Y] &= \left( \exp(s) - 1 \right) \exp \left( 2 m + s \right) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s) &= \frac{\ln(y) - m}{s} \\ \nabla_{s} (y; m, s) &= \frac{\left( \ln(y) - m \right)^2}{2 s^2} - \frac{1}{2s} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s) &= \frac{1}{s} \\ \mathcal{I}_{m, s} (m, s) &= 0 \\ \mathcal{I}_{s, s} (m, s) &= \frac{1}{2 s^2} \\ \end{aligned} \]
\[ f(y | s, b) = \frac{b}{s} \left( 1 + \frac{y}{s} \right)^{-b - 1} \]
\[ \begin{aligned} \mathrm{E}[Y] &= \frac{s}{b - 1}, & \quad \text{for } a &> 1 \\ \mathrm{var}[Y] &= \frac{s^2 b}{(b - 1)^2 (b - 2)}, & \quad \text{for } a &> 2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{s} (y; s, b) &= \frac{1}{s} \left( b \frac{y}{s} - 1 \right) \left( \frac{y}{s} + 1 \right)^{-1} \\ \nabla_{b} (y; s, b) &= \frac{1}{b} - \ln \left( \frac{y}{s} + 1 \right) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{s, s} (s, b) &= \frac{b}{s^2 (b + 2)} \\ \mathcal{I}_{s, b} (s, b) &= - \frac{1}{s (b + 1)} \\ \mathcal{I}_{b, b} (s, b) &= \frac{1}{b^2} \\ \end{aligned} \]
\[ f(y | s) = \frac{y}{s^2} \exp \left(- \frac{y^2}{2 s^2} \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= s \sqrt{\frac{\pi}{2}} \\ \mathrm{var}[Y] &= s^2 \frac{4 - \pi}{2}\\ \end{aligned} \]
\[ \begin{aligned} \nabla_{s} (y; s) &= \frac{y^2 - 2 s^2}{s^3} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{s, s} (s) &= \frac{4}{s^2} \\ \end{aligned} \]
\[ f(y | r, b) = r b (r y)^{b - 1} \exp \left( -(r y)^b \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= \frac{1}{r} \Gamma \left(1 + b^{-1} \right) \\ \mathrm{var}[Y] &= \frac{1}{r^2} \left( \Gamma \left(1 + 2 b^{-1} \right) - \Gamma \left(1 + b^{-1} \right)^2 \right) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{r} (y; r, b) &= \frac{b}{r} \left( 1 - (r y)^b \right) \\ \nabla_{b} (y; r, b) &= \left( 1 - (r y)^b \right) \ln (r y) + \frac{1}{b} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{r, r} (r, b) &= \frac{b^2}{r^2} \\ \mathcal{I}_{r, b} (r, b) &= \frac{\psi_0(1) + 1}{r} \\ \mathcal{I}_{b, b} (r, b) &= \frac{\psi_0(1)^2 + 2 \psi_0(1) + \psi_1(1) + 1}{b^2} \\ \end{aligned} \]
\[ f(y | s, b) = \frac{b}{s} \left( \frac{y}{s} \right)^{b - 1} \exp \left( - \left( \frac{y}{s} \right)^b \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= s \Gamma \left(1 + b^{-1} \right) \\ \mathrm{var}[Y] &= s^2 \left( \Gamma \left(1 + 2 b^{-1} \right) - \Gamma \left(1 + b^{-1} \right)^2 \right) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{s} (y; s, b) &= \frac{b}{s} \left( \left( \frac{y}{s} \right)^b - 1 \right) \\ \nabla_{b} (y; s, b) &= \left( 1 - \left( \frac{y}{s} \right)^b \right) \ln \left( \frac{y}{s} \right) + \frac{1}{b} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{s, s} (s, b) &= \frac{b^2}{s^2} \\ \mathcal{I}_{s, b} (s, b) &= - \frac{\psi_0(1) + 1}{s} \\ \mathcal{I}_{b, b} (s, b) &= \frac{\psi_0(1)^2 + 2 \psi_0(1) + \psi_1(1) + 1}{b^2} \\ \end{aligned} \]
\[ f(y | m, s, a) = \frac{1}{s \left( 1 / a + a\right)} \exp \left\{- \frac{\lvert y - m \rvert}{s} a^{\mathrm{sign}(y - m)} \right\} \]
\[ \begin{aligned} \mathrm{E}[Y] &= m + s (1 / a - a) \\ \mathrm{var}[Y] &= s^2 (1 / a^2 + a^2) \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s, a) &= \frac{\mathrm{sign}(y - m) a^{\mathrm{sign}(y - m)}}{s} \\ \nabla_{s} (y; m, s, a) &= \frac{\lvert y - m \rvert a^{\mathrm{sign}(y - m)}}{s^2} - \frac{1}{s} \\ \nabla_{a} (y; m, s, a) &= -\frac{(y - m) a^{\mathrm{sign}(y - m)}}{s} + \frac{1 - a^2}{a + a^3} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s, a) &= \frac{1}{s^2} \\ \mathcal{I}_{m, s} (m, s, a) &= 0 \\ \mathcal{I}_{m, a} (m, s, a) &= -\frac{2}{s (1 + a^2)} \\ \mathcal{I}_{s, s} (m, s, a) &= \frac{1}{s^2} \\ \mathcal{I}_{s, a} (m, s, a) &= -\frac{1}{s a} \frac{1 - a^2}{1 + a^2} \\ \mathcal{I}_{a, a} (m, s, a) &= \frac{1}{a^2} + \frac{4}{(1 + a^2)^2} \\ \end{aligned} \]
\[ f(y | m, s) = \frac{1}{2s} \exp \left\{- \frac{\lvert y - m \rvert}{s} \right\} \]
\[ \begin{aligned} \mathrm{E}[Y] &= m \\ \mathrm{var}[Y] &= 2s^2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s) &= \frac{\mathrm{sign}(y - m)}{s} \\ \nabla_{s} (y; m, s) &= \frac{\lvert y - m \rvert}{s^2} - \frac{1}{s} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s) &= \frac{1}{s^2} \\ \mathcal{I}_{m, s} (m, s) &= 0 \\ \mathcal{I}_{s, s} (m, s) &= \frac{1}{s^2} \\ \end{aligned} \]
\[ f(y | m, s) = \frac{1}{s} \exp \left( - \frac{x - m}{s} \right) \left( 1 + \exp \left( - \frac{x - m}{s} \right) \right)^{-2} \]
\[ \begin{aligned} \mathrm{E}[Y] &= m \\ \mathrm{var}[Y] &= \frac{\pi^2}{3} s^2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s) &= \frac{1}{s} \tanh \left( \frac{y - m}{2 s} \right) \\ \nabla_{s} (y; m, s) &= \frac{y - m}{s^2} \tanh \left( \frac{y - m}{2 s} \right) - \frac{1}{s} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s) &= \frac{1}{3 s^2} \\ \mathcal{I}_{m, s} (m, s) &= 0 \\ \mathcal{I}_{s, s} (m, s) &= \frac{1}{3 s^2} \left( \frac{\pi^2}{3} + 1 \right) \\ \end{aligned} \]
\[ f(y | m, s) = \frac{1}{\sqrt{2 \pi s}} \exp \left( -\frac{(y - m)^2}{2 s} \right) \]
\[ \begin{aligned} \mathrm{E}[Y] &= m \\ \mathrm{var}[Y] &= s \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s) &= \frac{y - m}{s} \\ \nabla_{s} (y; m, s) &= \frac{(y - m)^2 - s}{2 s^2} \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s) &= \frac{1}{s} \\ \mathcal{I}_{m, s} (m, s) &= 0 \\ \mathcal{I}_{s, s} (m, s) &= \frac{1}{2 s^2} \\ \end{aligned} \]
\[ f(y | m, s, v) = \frac{\Gamma \left( \frac{v + 1}{2} \right)}{\Gamma \left( \frac{v}{2} \right) \sqrt{\pi s v}} \left( 1 + \frac{(y - m)^2}{s v} \right)^{-\frac{v + 1}{2}} \]
\[ \begin{aligned} \mathrm{E}[Y] &= m, & \quad \text{for } v &> 1 \\ \mathrm{var}[Y] &= \frac{v}{v - 2} s, & \quad \text{for } v &> 2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{m} (y; m, s, v) &= \frac{(v + 1) (y - m) }{(y - m)^2 + s v} \\ \nabla_{s} (y; m, s, v) &= \frac{v}{2s} \frac{(y - m)^2 - s}{(y - m)^2 + s v} \\ \nabla_{v} (y; m, s, v) &= \frac{1}{2} \frac{(y - m)^2 - s}{(y - m)^2 + s v} - \frac{1}{2} \ln \left(1 + \frac{1}{v} \frac{(y - m)^2}{s} \right) - \frac{1}{2} \psi_0 \left( \frac{v}{2} \right) + \frac{1}{2} \psi_0 \left( \frac{v + 1}{2} \right) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{m, m} (m, s, v) &= \frac{v + 1}{s (v + 3)} \\ \mathcal{I}_{m, s} (m, s, v) &= 0 \\ \mathcal{I}_{m, v} (m, s, v) &= 0 \\ \mathcal{I}_{s, s} (m, s, v) &= \frac{v}{2 s^2 (v + 3)} \\ \mathcal{I}_{s, v} (m, s, v) &= \frac{-1}{s (v + 1) (v + 3)} \\ \mathcal{I}_{v, v} (m, s, v) &= - \frac{1}{2} \frac{v + 5}{v (v + 1) (v + 3)} + \frac{1}{4} \psi_1 \left( \frac{v}{2} \right) - \frac{1}{4} \psi_1 \left( \frac{v + 1}{2} \right) \\ \end{aligned} \]
Blazsek, S. and Villatoro, M. (2015). Is Beta-t-EGARCH(1,1) Superior to GARCH(1,1)? Applied Economics, 47(17), 1764–1774. doi: 10.1080/00036846.2014.1000536.
Harvey, A. C. and Chakravarty, T. (2008). Beta-t-(E)GARCH. Cambridge Working Papers in Economics, CWPE 0840. doi: 10.17863/cam.5286.
Harvey, A. C. and Lange, R. J. (2018). Modeling the Interactions Between Volatility and Returns using EGARCH-M. Journal of Time Series Analysis, 39(6), 909–919. doi: 10.1111/jtsa.12419.
Lange, K. L., Little, R. J. A., and Taylor, J. M. G. (1989). Robust Statistical Modeling Using the t Distribution. Journal of the American Statistical Association, 84(408), 881–896. doi: 10.1080/01621459.1989.10478852.
\[ f(\boldsymbol{y} | \boldsymbol{m}, \boldsymbol{K}) = \frac{1}{\sqrt{(2 \pi)^n | \boldsymbol{K}|}} \exp \left( - \frac{1}{2} (\boldsymbol{y} - \boldsymbol{m})^\intercal \boldsymbol{K}^{-1} (\boldsymbol{y} - \boldsymbol{m}) \right) \]
\[ \begin{aligned} \mathrm{E}[\boldsymbol{Y}] &= \boldsymbol{m} \\ \mathrm{var}[\boldsymbol{Y}] &= \boldsymbol{K} \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{\boldsymbol{m}} (\boldsymbol{y}; \boldsymbol{m}, \boldsymbol{K}) &= \boldsymbol{K}^{-1} \left(\boldsymbol{y} - \boldsymbol{m} \right) \\ \nabla_{\mathrm{vec}(\boldsymbol{K})} (\boldsymbol{y}; \boldsymbol{m}, \boldsymbol{K}) &= \mathrm{vec} \left( \frac{1}{2} \boldsymbol{K}^{-1} \left(\boldsymbol{y} - \boldsymbol{m} \right) \left(\boldsymbol{y} - \boldsymbol{m} \right)^\intercal \boldsymbol{K}^{-1} - \frac{1}{2} \boldsymbol{K}^{-1} \right) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{\boldsymbol{m}, \boldsymbol{m}} (\boldsymbol{m}, \boldsymbol{K}) &= \boldsymbol{K}^{-1} \\ \mathcal{I}_{\boldsymbol{m}, \mathrm{vec}(\boldsymbol{K})} (\boldsymbol{m}, \boldsymbol{K}) &= \boldsymbol{0} \\ \mathcal{I}_{\mathrm{vec}(\boldsymbol{K}), \mathrm{vec}(\boldsymbol{K})} (\boldsymbol{m}, \boldsymbol{K}) &= \frac{1}{4} \boldsymbol{K}^{-1} \otimes \boldsymbol{K}^{-1} + \frac{1}{4} \mathrm{vec}\left(\boldsymbol{K}^{-1} \right) \mathrm{vec}\left(\boldsymbol{K}^{-1} \right)^\intercal \\ \end{aligned} \]
\[ f(\boldsymbol{y} | \boldsymbol{m}, \boldsymbol{K}, v) = \frac{\Gamma \left( \frac{v + n}{2} \right)}{\Gamma \left( \frac{v}{2} \right) \sqrt{(v \pi)^n | \boldsymbol{K}|}} \left( 1 + \frac{1}{v} (\boldsymbol{y} - \boldsymbol{m})^\intercal \boldsymbol{K}^{-1} (\boldsymbol{y} - \boldsymbol{m}) \right)^{-\frac{v + n}{2}} \]
\[ \begin{aligned} \mathrm{E}[\boldsymbol{Y}] &= \boldsymbol{m}, & \quad \text{for } v &> 1 \\ \mathrm{var}[\boldsymbol{Y}] &= \frac{v}{v - 2} \boldsymbol{K}, & \quad \text{for } v &> 2 \\ \end{aligned} \]
\[ \begin{aligned} \nabla_{\boldsymbol{m}} (\boldsymbol{y}; \boldsymbol{m}, \boldsymbol{K}, v) &= \frac{v + n}{v + \left(\boldsymbol{y} - \boldsymbol{m} \right)^\intercal \boldsymbol{K}^{-1} \left(\boldsymbol{y} - \boldsymbol{m} \right)} \boldsymbol{K}^{-1} \left(\boldsymbol{y} - \boldsymbol{m} \right) \\ \nabla_{\mathrm{vec}(\boldsymbol{K})} (\boldsymbol{y}; \boldsymbol{m}, \boldsymbol{K}, v) &= \mathrm{vec} \left( \frac{1}{2} \frac{v + n}{v + \left(\boldsymbol{y} - \boldsymbol{m} \right)^\intercal \boldsymbol{K}^{-1} \left(\boldsymbol{y} - \boldsymbol{m} \right)} \boldsymbol{K}^{-1} \left(\boldsymbol{y} - \boldsymbol{m} \right) \left(\boldsymbol{y} - \boldsymbol{m} \right)^\intercal \boldsymbol{K}^{-1} - \frac{1}{2} \boldsymbol{K}^{-1} \right) \\ \nabla_{v} (\boldsymbol{y}; \boldsymbol{m}, \boldsymbol{K}, v) &= \frac{1}{2} \frac{ \left(\boldsymbol{y} - \boldsymbol{m} \right)^\intercal \boldsymbol{K}^{-1} \left(\boldsymbol{y} - \boldsymbol{m} \right) - n }{ \left(\boldsymbol{y} - \boldsymbol{m} \right)^\intercal \boldsymbol{K}^{-1} \left(\boldsymbol{y} - \boldsymbol{m} \right)) + v} - \frac{1}{2} \ln \left( 1 + \frac{1}{v} \left(\boldsymbol{y} - \boldsymbol{m} \right)^\intercal \boldsymbol{K}^{-1} \left(\boldsymbol{y} - \boldsymbol{m} \right) \right) \\ & \qquad - \frac{1}{2} \psi_0 \left( \frac{v}{2} \right) + \frac{1}{2} \psi_0 \left( \frac{v + n}{2} \right) \\ \end{aligned} \]
\[ \begin{aligned} \mathcal{I}_{\boldsymbol{m}, \boldsymbol{m}} (\boldsymbol{m}, \boldsymbol{K}, v) &= \frac{v + n}{v + n + 2} \boldsymbol{K}^{-1} \\ \mathcal{I}_{\boldsymbol{m}, \mathrm{vec}(\boldsymbol{K})} (\boldsymbol{m}, \boldsymbol{K}, v) &= \boldsymbol{0} \\ \mathcal{I}_{\boldsymbol{m}, v} (\boldsymbol{m}, \boldsymbol{K}, v) &= \boldsymbol{0} \\ \mathcal{I}_{\mathrm{vec}(\boldsymbol{K}), \mathrm{vec}(\boldsymbol{K})} (\boldsymbol{m}, \boldsymbol{K}, v) &= \frac{1}{4} \frac{v + n}{v + n + 2} \boldsymbol{K}^{-1} \otimes \boldsymbol{K}^{-1} + \frac{1}{4} \frac{v + n - 2}{v + n + 2} \mathrm{vec}\left(\boldsymbol{K}^{-1} \right) \mathrm{vec}\left(\boldsymbol{K}^{-1} \right)^\intercal \\ \mathcal{I}_{\mathrm{vec}(\boldsymbol{K}), v} (\boldsymbol{m}, \boldsymbol{K}, v) &= - \frac{1}{(v + n +2)(v + n)} \mathrm{vec}\left(\boldsymbol{K}^{-1} \right) \\ \mathcal{I}_{v, v} (\boldsymbol{m}, \boldsymbol{K}, v) &= ) - \frac{1}{2} \frac{n (v + n + 4)}{v (v + n + 2)(v + n)} + \frac{1}{4} \psi_1 \left( \frac{v}{2} \right) - \frac{1}{4} \psi_1 \left( \frac{v + n}{2} \right) \\ \end{aligned} \]
Blazsek, S. and Villatoro, M. (2015). Is Beta-t-EGARCH(1,1) Superior to GARCH(1,1)? Applied Economics, 47(17), 1764–1774. doi: 10.1080/00036846.2014.1000536.
Harvey, A. C. and Chakravarty, T. (2008). Beta-t-(E)GARCH. Cambridge Working Papers in Economics, CWPE 0840. doi: 10.17863/cam.5286.
Harvey, A. C. and Lange, R. J. (2018). Modeling the Interactions Between Volatility and Returns using EGARCH-M. Journal of Time Series Analysis, 39(6), 909–919. doi: 10.1111/jtsa.12419.
Lange, K. L., Little, R. J. A., and Taylor, J. M. G. (1989). Robust Statistical Modeling Using the t Distribution. Journal of the American Statistical Association, 84(408), 881–896. doi: 10.1080/01621459.1989.10478852.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.