The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The details below are for those interested in how geex is organized. It is not necessary for using geex.
The design of geex
starts with the key to M-estimation,
the estimating function:
\[ \psi(O_i, \theta) . \]
geex
composes \(\psi\)
with two R functions: the “outer” estFUN
and the “inner”
psiFUN
. In pseudocode, \(\psi(O_i, \theta) =\):
estFUN <- function(O_i){
psiFUN <- function(theta){
psi(O_i, theta)
}
return(psiFUN)
}
The reason for composing the \(\psi\) function in this way is that in order to do estimation (finding roots) and inference (computing the empirical sandwich variance estimator), \(\psi\) needs to be function of \(\theta\). M-estimation theory gives the following instructions:
With \(\hat{\theta}\) in hand, the
quantity \(B_i\) is simple to compute.
The computational challenges of M-estimation, then, are finding roots of
\(G_m\) and calculating the derivative
\(A_i\). By composing \(\psi\) of two functions in
geex
, one can first do all the manipulations of \(O_i\) (data) that are independent of \(\theta\). In a sense, estFUN
“fixes” the data so that numerical routines only need deal with \(\theta\) in psiFUN
.
Before describing the mechanics of how geex
finding
roots of \(G_m\) and computes
derivatives of \(\psi\), let’s look at
the m_estimation_basis
S4
object which forms
the basis of all computations in geex
.
An m_estimation_basis
object, at a minimum needs two
objects: an estFUN
and a data.frame
. Let’s use
a simple estFUN
that estimates the mean and variance of
Y1
in the geexex
dataset.
library(geex)
library(dplyr)
<- function(data){
myee <- data$Y1
Y1 function(theta){
c(Y1 - theta[1],
- theta[1])^2 - theta[2])
(Y1
} }
Now we can create a basis:
<- new("m_estimation_basis",
mybasis .estFUN = myee,
.data = geexex)
And look at what this object contains:
slotNames(mybasis)
## [1] ".data" ".units" ".weights" ".psiFUN_list" ".GFUN"
## [6] ".control" ".estFUN" ".outer_args" ".inner_args"
Two slots are worth examining. First, .psiFUN_list
is a
list
of function
s:
@.psiFUN_list[1:2] mybasis
## $`1`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <environment: 0x7f8b8adb47b8>
##
## $`2`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b8adb7350>
This object is essentially equivalent to:
<- nrow(geexex)
m lapply(split(geexex, f = 1:m), function(O_i){
myee(O_i)
})
From this list of functions, we can compute \(A_i\), and by summing across the list, form \(G_m\). The latter is found in:
@.GFUN mybasis
## function (theta)
## {
## psii <- lapply(psi_list, function(psi) {
## do.call(psi, args = append(list(theta = theta), object@.inner_args))
## })
## compute_sum_of_list(psii, object@.weights)
## }
## <environment: 0x7f8b8a8c2588>
Now that we have \(G_m\) as a
function of theta
, we can found its roots using a
root-finding algorithm such as rootSolve::multiroot
:
::multiroot(
rootSolvef = mybasis@.GFUN,
start = c(0, 0))
## $root
## [1] 5.044563 10.041239
##
## $f.root
## [1] -2.131628e-14 4.654055e-13
##
## $iter
## [1] 4
##
## $estim.precis
## [1] 2.433609e-13
Within geex
this is done with the
estimate_GFUN_roots
function. To illustrate, I first need
to update the .control
slot in mybasis
with
starting values for multiroot
.
<- new('geex_control', .root = setup_root_control(start = c(1, 1)))
mycontrol @.control <- mycontrol
mybasis<- mybasis %>%
roots estimate_GFUN_roots()
roots
## $root
## [1] 5.044563 10.041239
##
## $f.root
## [1] -2.131628e-14 -2.238210e-13
##
## $iter
## [1] 4
##
## $estim.precis
## [1] 1.225686e-13
Note that is bad form to assign S4
slot with
someS4object@aslot <- something
, but I do so here
because I have not created a generic function for setting the
.control
slot.
In the last section, we found \(\hat{\theta}\), which we now use to compute the \(A_i\) and \(B_i\) matrices.
geex
uses the numDeriv::jacobian
function
to numerically evaluate derivatives. For example, \(A_1 = - (\partial \psi(O_1, \theta)/\partial
\theta)|_{\theta = \hat{\theta}}\) for this example is:
-numDeriv::jacobian(func = mybasis@.psiFUN_list[[1]], x = roots$root)
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.752514 1
geex
performs this operation for each \(i = 1, \dots, m\) to yield a list of \(A_i\) matrices. Then summing across this
list yields \(A = \sum_i A_i\). The
estimate_sandwich_matrices
function computes the list of
\(A_i\), \(B_i\) and \(A\) and \(B\):
<- mybasis %>%
mats estimate_sandwich_matrices(.theta = roots$root)
# Compare to the numDeriv computation above
grab_bread_list(mats)[[1]]
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.752514 1
Finally, computing \(\hat{\Sigma} = A^{-1}
B (A^{-1})^{\intercal}\) is accomplished with the
compute_sigma
function.
%>%
mats compute_sigma(A = grab_bread(.), B = grab_meat(.))} {
## [,1] [,2]
## [1,] 0.10041239 0.03667969
## [2,] 0.03667969 2.49219638
m_estimate
All of the operations described above are wrapped and packaged in the
m_estimate
function:
m_estimate(
estFUN = myee,
data = geexex,
root_control = setup_root_control(start = c(0, 0))
)
## An object of class "geex"
## Slot "call":
## m_estimate(estFUN = myee, data = geexex, root_control = setup_root_control(start = c(0,
## 0)))
##
## Slot "basis":
## An object of class "m_estimation_basis"
## Slot ".data":
## Y1 Y2 X1 Y3 W1 Z1 X2
## 1 3.66830660 2.02817177 4.949316 16.345756 4.823768 8.921782 0
## 2 10.45245483 1.64329659 7.851962 25.687417 7.884845 13.909474 0
## 3 3.12341064 2.85262638 4.729075 16.108307 4.709346 9.014695 0
## 4 8.37150253 2.51336525 2.564395 10.579970 2.786091 6.733378 0
## 5 -0.83197489 3.01820300 4.782347 16.464013 4.811590 9.290492 0
## 6 3.39877632 0.97852092 5.335713 18.325769 5.415370 10.322199 0
## 7 1.89433086 1.43833173 1.386442 5.577536 1.240995 3.497873 0
## 8 3.52281395 0.98744392 3.453377 13.074664 3.632010 7.894598 0
## 9 9.96040583 -1.02081430 2.958662 10.050725 2.752347 5.612733 0
## 10 4.57026477 2.33235027 7.591370 24.414247 7.501404 13.027192 0
## 11 5.69037402 3.24051157 6.812940 22.528706 6.835412 12.309296 0
## 12 6.01840507 2.67134960 2.481492 9.540750 2.505561 5.818512 0
## 13 2.54186468 0.66996589 3.307246 11.720103 3.256837 6.759235 0
## 14 -0.71686038 1.14941969 2.366527 9.839421 2.551487 6.289631 0
## 15 3.67609826 0.21116926 6.308752 21.049635 6.339597 11.586507 0
## 16 5.51354425 3.23152191 2.280638 8.812598 2.273309 5.391641 0
## 17 9.07247997 1.66560033 2.872154 10.227607 2.774940 5.919377 0
## 18 3.97770523 1.03267790 4.361465 15.595252 4.489179 9.053054 0
## 19 3.78983596 2.87937035 3.573053 11.805345 3.344600 6.445765 0
## 20 11.46076273 1.74642131 5.556376 20.979426 6.133951 12.644862 0
## 21 1.90514658 0.48212421 7.752991 24.820884 7.643469 13.191397 0
## 22 6.69600961 1.97611674 6.030068 20.854263 6.221083 11.809162 0
## 23 2.66421207 2.02665947 4.213262 14.901747 4.278752 8.581854 0
## 24 6.66014272 2.16368120 2.923132 11.542799 3.116483 7.158102 0
## 25 -1.18104663 2.41000794 5.156830 16.656110 4.953235 8.920865 0
## 26 2.92500198 1.37263740 5.519839 18.121067 5.410226 9.841308 0
## 27 3.88083378 2.63691800 5.477283 17.711627 5.297228 9.495703 0
## 28 9.02982953 0.79806522 4.055430 14.397234 4.113166 8.314089 0
## 29 3.12172019 3.34654241 4.319714 13.801412 4.030281 7.321841 0
## 30 6.19158815 1.40123269 10.283894 33.098758 10.345663 17.672917 0
## 31 3.32882227 2.44220444 2.557841 9.582409 2.535063 5.745648 0
## 32 1.59847689 2.61352641 11.152742 37.215603 11.592086 20.486489 0
## 33 7.75618478 1.70090363 2.538047 9.476212 2.503565 5.669141 0
## 34 3.15921522 0.39941190 7.939765 25.708101 7.911967 13.798454 0
## 35 10.39273751 1.66053304 3.629295 12.197870 3.456791 6.753928 0
## 36 6.77228554 1.41869225 5.644317 18.711156 5.588868 10.244681 0
## 37 4.39629525 1.60963799 1.385403 6.339116 1.431130 4.261012 0
## 38 6.82219543 2.84551436 3.651563 13.372011 3.755894 7.894667 0
## 39 4.83938127 2.68472721 2.075987 9.293362 2.342337 6.179382 0
## 40 6.82448417 2.23771308 7.947636 26.813109 8.190186 14.891656 0
## 41 3.36629988 1.28937811 3.893624 13.579242 3.868217 7.738807 0
## 42 -3.54597542 4.61331896 4.399113 16.600543 4.749914 10.001873 0
## 43 5.62728767 0.37335265 2.019187 6.280784 1.574993 3.252004 0
## 44 7.64019560 0.39269371 10.182047 33.169007 10.337763 17.895937 0
## 45 1.07266235 2.34031745 4.471305 14.891632 4.340734 8.184674 0
## 46 0.54542518 4.72788771 5.445723 19.659399 5.776280 11.490815 0
## 47 3.25060929 1.67280996 5.030453 16.727920 4.939593 9.182240 0
## 48 2.93555501 0.74310325 7.586987 26.080025 7.916753 14.699546 0
## 49 6.67598396 1.56860189 9.452187 30.400340 9.463132 16.222060 0
## 50 5.53662175 4.54885325 8.141977 24.547274 7.672313 12.334309 0
## 51 9.13874582 1.22859200 5.623052 18.422092 5.511286 9.987515 1
## 52 11.61401290 1.49265765 5.066275 15.460228 4.631626 7.860815 1
## 53 4.92821273 1.72997742 2.174904 8.703576 2.219620 5.441220 1
## 54 4.90318672 2.74811656 1.373871 8.019078 1.848237 5.958272 1
## 55 6.00098760 2.66859381 4.252394 12.485257 3.684413 6.106666 1
## 56 3.65150186 1.54470134 1.844766 8.514763 2.089882 5.747614 1
## 57 4.54658518 0.07215478 6.257311 19.373108 5.907605 9.987141 1
## 58 4.60446834 3.88197707 7.640542 26.746499 8.096760 15.285686 1
## 59 6.05634729 0.75028887 3.400547 13.582939 3.745871 8.482119 1
## 60 5.55593474 1.51065503 3.879217 12.798800 3.669504 6.979974 1
## 61 4.03092200 2.21539129 5.044494 16.871488 4.978996 9.304746 1
## 62 5.23612553 2.42210867 3.724228 13.103840 3.707017 7.517498 1
## 63 4.29091253 0.77885172 3.209739 11.250332 3.115018 6.435724 1
## 64 8.17872107 2.31222782 3.503141 15.091380 4.148630 9.836670 1
## 65 5.02695115 2.88646213 3.588984 12.896787 3.621443 7.513311 1
## 66 2.48083883 2.47481069 2.572586 9.004733 2.394330 5.145854 1
## 67 3.99004087 2.86984135 2.321320 9.601955 2.480819 6.119975 1
## 68 2.23831135 1.11347620 7.354859 24.266268 7.405282 13.233980 1
## 69 5.81016858 1.87134447 1.780620 7.271942 1.763140 4.601012 1
## 70 8.38552575 3.09651049 2.438272 9.222328 2.415150 5.564919 1
## 71 7.52829625 2.51802955 4.870025 17.058979 4.982251 9.753941 1
## 72 5.80565410 2.39803318 6.107551 19.258297 5.841462 10.096971 1
## 73 4.63571743 3.06665941 3.068762 10.043868 2.778158 5.440724 1
## 74 6.15793650 1.55045992 8.069649 27.857468 8.481779 15.752995 1
## 75 4.78126024 2.62610198 2.564135 7.630308 2.048611 3.784106 1
## 76 -3.16739941 1.18116405 6.700594 22.114532 6.703782 12.063641 1
## 77 6.43347697 1.73648379 5.381833 17.057971 5.109951 8.985221 1
## 78 3.50959659 2.15457529 12.644899 40.205236 12.712534 21.237888 1
## 79 10.07323536 2.56844555 2.037142 9.119878 2.289255 6.064165 1
## 80 13.67440127 -0.66015968 5.883640 17.576515 5.365039 8.751055 1
## 81 0.04110863 3.13653254 7.093428 24.177106 7.317634 13.536964 1
## 82 7.35949555 2.42177278 4.873831 16.571498 4.861332 9.260751 1
## 83 5.49607715 3.35008260 8.291038 25.527766 7.954701 13.091208 1
## 84 2.90516885 3.10375689 4.051026 12.221867 3.568223 6.145328 1
## 85 7.48091201 2.64704611 7.689539 25.778200 7.866935 14.243891 1
## 86 7.83288634 2.17563581 4.933636 16.643004 4.894160 9.242550 1
## 87 4.62720660 2.65355779 5.774989 19.541334 5.829081 10.878851 1
## 88 3.81921320 1.93450970 4.483566 16.268060 4.687907 9.542711 1
## 89 0.65673908 2.64552217 2.739769 11.946482 3.171563 7.836829 1
## 90 2.50073977 2.36429404 5.286464 17.755621 5.260521 9.825925 1
## 91 4.06797383 2.84344157 3.701213 12.546517 3.561933 6.994698 1
## 92 3.99673254 1.32352113 5.795986 20.816259 6.153061 12.122280 1
## 93 8.81558134 1.60856710 4.883292 15.756919 4.660053 8.431981 1
## 94 3.93610997 2.40494064 7.172253 22.359187 6.882860 11.600808 1
## 95 12.58110379 0.89314130 3.340735 11.491910 3.208161 6.480807 1
## 96 3.28003669 1.61669959 7.262549 26.233329 7.873969 15.339506 1
## 97 11.30218798 2.29402025 1.940701 6.989609 1.732577 4.078556 1
## 98 5.64776480 3.79306067 5.958475 20.288944 6.061855 11.351232 1
## 99 0.65818837 2.81403217 4.432708 14.119440 4.138037 7.470379 1
## 100 7.30774920 0.67997560 3.283518 10.676520 2.990010 5.751243 1
## Y4 Y5
## 1 0.092739260 1
## 2 1.016727357 1
## 3 0.493990392 0
## 4 1.243224329 0
## 5 0.695205988 1
## 6 0.952201378 1
## 7 -0.343146465 0
## 8 1.159870423 0
## 9 -0.429393276 0
## 10 0.499274828 1
## 11 0.871180147 1
## 12 0.444423658 0
## 13 0.229090617 1
## 14 1.076493168 0
## 15 0.854254673 1
## 16 0.298747112 0
## 17 -0.001638862 0
## 18 1.047002780 1
## 19 -0.456508875 1
## 20 2.965934470 0
## 21 0.437209150 0
## 22 1.467067372 0
## 23 0.783287466 0
## 24 1.165717760 0
## 25 -0.198696160 1
## 26 0.213533342 1
## 27 -0.072493261 1
## 28 0.736487513 1
## 29 -0.625758090 1
## 30 1.375465405 1
## 31 0.264670535 0
## 32 2.972649859 1
## 33 0.215875121 1
## 34 0.782782994 1
## 35 -0.227084853 1
## 36 0.442637449 1
## 37 0.421447969 0
## 38 0.882479555 0
## 39 1.373000995 1
## 40 1.864965592 1
## 41 0.387733146 1
## 42 1.943114799 1
## 43 -1.474856978 0
## 44 1.741072051 1
## 45 0.024847168 1
## 46 1.966803213 1
## 47 0.239605022 0
## 48 2.177764398 1
## 49 1.088997768 1
## 50 -0.964458223 1
## 51 0.715242972 1
## 52 -0.631970427 1
## 53 0.996355205 0
## 54 2.634852773 1
## 55 -1.246686055 1
## 56 1.764940768 0
## 57 -0.173094497 1
## 58 3.188926631 1
## 59 2.321353405 1
## 60 0.149069864 0
## 61 0.842453670 1
## 62 0.903578781 0
## 63 0.542090297 1
## 64 3.532272980 0
## 65 1.088732578 1
## 66 0.144233610 1
## 67 1.470126269 0
## 68 1.537177460 0
## 69 0.708145014 1
## 70 0.751337374 0
## 71 1.535905791 1
## 72 0.146399418 0
## 73 -0.255543077 0
## 74 3.055486628 0
## 75 -1.205682549 1
## 76 1.282809142 1
## 77 0.050654962 1
## 78 2.135029369 1
## 79 1.812166070 1
## 80 -0.886040754 1
## 81 2.206165066 1
## 82 1.037387368 1
## 83 0.083754535 0
## 84 -0.926108918 0
## 85 2.078535519 1
## 86 0.935458616 0
## 87 1.393866742 0
## 88 1.865718680 0
## 89 2.601152645 0
## 90 1.024876085 1
## 91 0.412999035 1
## 92 2.607900007 0
## 93 0.195371813 1
## 94 0.159654048 1
## 95 0.403777090 0
## 96 3.771937632 1
## 97 -0.038425654 1
## 98 1.609367331 0
## 99 -0.135412360 1
## 100 -0.245682938 0
##
## Slot ".units":
## character(0)
##
## Slot ".weights":
## numeric(0)
##
## Slot ".psiFUN_list":
## $`1`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a661350>
##
## $`2`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a65cd30>
##
## $`3`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a658438>
##
## $`4`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a659d98>
##
## $`5`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a657858>
##
## $`6`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a653778>
##
## $`7`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a64fa18>
##
## $`8`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a64d350>
##
## $`9`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a646be0>
##
## $`10`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a6480e0>
##
## $`11`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a6457b0>
##
## $`12`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a640ef0>
##
## $`13`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a63cba8>
##
## $`14`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a63e038>
##
## $`15`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a63baf8>
##
## $`16`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a639430>
##
## $`17`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a633008>
##
## $`18`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a630b38>
##
## $`19`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a62c390>
##
## $`20`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a62d890>
##
## $`21`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a627238>
##
## $`22`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a624860>
##
## $`23`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a625dd0>
##
## $`24`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a623510>
##
## $`25`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a620dd8>
##
## $`26`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a61e4e0>
##
## $`27`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a620038>
##
## $`28`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a61b900>
##
## $`29`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a618e10>
##
## $`30`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a616c88>
##
## $`31`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a612668>
##
## $`32`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a613b68>
##
## $`33`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a611430>
##
## $`34`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a60aef0>
##
## $`35`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a606940>
##
## $`36`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a607eb0>
##
## $`37`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a605548>
##
## $`38`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5fee10>
##
## $`39`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5fcb38>
##
## $`40`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5fa6d8>
##
## $`41`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5fbd60>
##
## $`42`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5f75b8>
##
## $`43`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5f37e8>
##
## $`44`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5f0e48>
##
## $`45`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5ee898>
##
## $`46`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5efdd0>
##
## $`47`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5ed708>
##
## $`48`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5e6cc0>
##
## $`49`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5e2898>
##
## $`50`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5e0438>
##
## $`51`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5e1c80>
##
## $`52`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5df190>
##
## $`53`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5dc940>
##
## $`54`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5de000>
##
## $`55`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5dbd98>
##
## $`56`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5d73c0>
##
## $`57`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5d4dd8>
##
## $`58`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5d3040>
##
## $`59`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5c24e0>
##
## $`60`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5c0668>
##
## $`61`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5c1fc8>
##
## $`62`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5bd938>
##
## $`63`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5bb120>
##
## $`64`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5b8898>
##
## $`65`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5b9d98>
##
## $`66`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5b7388>
##
## $`67`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5b4c18>
##
## $`68`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5b5f58>
##
## $`69`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5af7b0>
##
## $`70`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5ad1c8>
##
## $`71`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5a8c50>
##
## $`72`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5a64a8>
##
## $`73`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5a7eb0>
##
## $`74`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5a3cf0>
##
## $`75`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5a1580>
##
## $`76`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a59eac8>
##
## $`77`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a59a240>
##
## $`78`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a59b708>
##
## $`79`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a599548>
##
## $`80`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a596b00>
##
## $`81`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a592240>
##
## $`82`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a593858>
##
## $`83`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a588a58>
##
## $`84`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a586358>
##
## $`85`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a587b30>
##
## $`86`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a583e08>
##
## $`87`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5814d8>
##
## $`88`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a57f0b0>
##
## $`89`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a57ac50>
##
## $`90`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a574b38>
##
## $`91`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a575fc8>
##
## $`92`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a571740>
##
## $`93`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a56d4d8>
##
## $`94`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a56aeb8>
##
## $`95`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a566d68>
##
## $`96`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a564320>
##
## $`97`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a565dd0>
##
## $`98`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a5635b8>
##
## $`99`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a561238>
##
## $`100`
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## <bytecode: 0x7f8b8a93d120>
## <environment: 0x7f8b7a55eba8>
##
##
## Slot ".GFUN":
## function (theta)
## {
## psii <- lapply(psi_list, function(psi) {
## do.call(psi, args = append(list(theta = theta), object@.inner_args))
## })
## compute_sum_of_list(psii, object@.weights)
## }
## <environment: 0x7f8b7a511cb8>
##
## Slot ".control":
## An object of class "geex_control"
## Slot ".approx":
## An object of class "approx_control"
## Slot ".FUN":
## function ()
## NULL
## <bytecode: 0x7f8b6da82970>
##
## Slot ".options":
## list()
##
##
## Slot ".root":
## An object of class "root_control"
## Slot ".object_name":
## [1] "root"
##
## Slot ".FUN":
## function (f, start, maxiter = 100, rtol = 1e-06, atol = 1e-08,
## ctol = 1e-08, useFortran = TRUE, positive = FALSE, jacfunc = NULL,
## jactype = "fullint", verbose = FALSE, bandup = 1, banddown = 1,
## parms = NULL, ...)
## {
## initfunc <- NULL
## if (is.list(f)) {
## if (!is.null(jacfunc) & "jacfunc" %in% names(f))
## stop("If 'f' is a list that contains jacfunc, argument 'jacfunc' should be NULL")
## jacfunc <- f$jacfunc
## initfunc <- f$initfunc
## f <- f$func
## }
## N <- length(start)
## if (!is.numeric(start))
## stop("start conditions should be numeric")
## if (!is.numeric(maxiter))
## stop("`maxiter' must be numeric")
## if (as.integer(maxiter) < 1)
## stop("maxiter must be >=1")
## if (!is.numeric(rtol))
## stop("`rtol' must be numeric")
## if (!is.numeric(atol))
## stop("`atol' must be numeric")
## if (!is.numeric(ctol))
## stop("`ctol' must be numeric")
## if (length(atol) > 1 && length(atol) != N)
## stop("`atol' must either be a scalar, or as long as `start'")
## if (length(rtol) > 1 && length(rtol) != N)
## stop("`rtol' must either be a scalar, or as long as `y'")
## if (length(ctol) > 1)
## stop("`ctol' must be a scalar")
## if (useFortran) {
## if (!is.compiled(f) & is.null(parms)) {
## Fun1 <- function(time = 0, x, parms = NULL) list(f(x,
## ...))
## Fun <- Fun1
## }
## else if (!is.compiled(f)) {
## Fun2 <- function(time = 0, x, parms) list(f(x, parms,
## ...))
## Fun <- Fun2
## }
## else {
## Fun <- f
## f <- function(x, ...) Fun(n = length(start), t = 0,
## x, f = rep(0, length(start)), 1, 1)$f
## }
## JacFunc <- jacfunc
## if (!is.null(jacfunc))
## if (!is.compiled(JacFunc) & is.null(parms))
## JacFunc <- function(time = 0, x, parms = parms) jacfunc(x,
## ...)
## else if (!is.compiled(JacFunc))
## JacFunc <- function(time = 0, x, parms = parms) jacfunc(x,
## parms, ...)
## else JacFunc <- jacfunc
## method <- "stode"
## if (jactype == "sparse") {
## method <- "stodes"
## if (!is.null(jacfunc))
## stop("jacfunc can not be used when jactype='sparse'")
## x <- stodes(y = start, time = 0, func = Fun, atol = atol,
## positive = positive, rtol = rtol, ctol = ctol,
## maxiter = maxiter, verbose = verbose, parms = parms,
## initfunc = initfunc)
## }
## else x <- steady(y = start, time = 0, func = Fun, atol = atol,
## positive = positive, rtol = rtol, ctol = ctol, maxiter = maxiter,
## method = method, jacfunc = JacFunc, jactype = jactype,
## verbose = verbose, parms = parms, initfunc = initfunc,
## bandup = bandup, banddown = banddown)
## precis <- attr(x, "precis")
## attributes(x) <- NULL
## x <- unlist(x)
## if (is.null(parms))
## reffx <- f(x, ...)
## else reffx <- f(x, parms, ...)
## i <- length(precis)
## }
## else {
## if (is.compiled(f))
## stop("cannot combine compiled code with R-implemented solver")
## precis <- NULL
## x <- start
## jacob <- matrix(nrow = N, ncol = N, data = 0)
## if (is.null(parms))
## reffx <- f(x, ...)
## else reffx <- f(x, parms, ...)
## if (length(reffx) != N)
## stop("'f', function must return as many function values as elements in start")
## for (i in 1:maxiter) {
## refx <- x
## pp <- mean(abs(reffx))
## precis <- c(precis, pp)
## ewt <- rtol * abs(x) + atol
## if (max(abs(reffx/ewt)) < 1)
## break
## delt <- perturb(x)
## for (j in 1:N) {
## x[j] <- x[j] + delt[j]
## if (is.null(parms))
## fx <- f(x, ...)
## else fx <- f(x, parms, ...)
## jacob[, j] <- (fx - reffx)/delt[j]
## x[j] <- refx[j]
## }
## relchange <- as.numeric(solve(jacob, -1 * reffx))
## if (max(abs(relchange)) < ctol)
## break
## x <- x + relchange
## if (is.null(parms))
## reffx <- f(x, ...)
## else reffx <- f(x, parms, ...)
## }
## }
## names(x) <- names(start)
## return(list(root = x, f.root = reffx, iter = i, estim.precis = precis[length(precis)]))
## }
## <bytecode: 0x7f8b6dab4ec0>
## <environment: namespace:rootSolve>
##
## Slot ".options":
## $start
## [1] 0 0
##
##
##
## Slot ".deriv":
## An object of class "deriv_control"
## Slot ".FUN":
## function (func, x, method = "Richardson", side = NULL, method.args = list(),
## ...)
## UseMethod("jacobian")
## <bytecode: 0x7f8b6da97a20>
## <environment: namespace:numDeriv>
##
## Slot ".options":
## $method
## [1] "Richardson"
##
##
##
##
## Slot ".estFUN":
## function(data){
## Y1 <- data$Y1
## function(theta){
## c(Y1 - theta[1],
## (Y1 - theta[1])^2 - theta[2])
## }
## }
## <bytecode: 0x7f8b8a93e710>
##
## Slot ".outer_args":
## list()
##
## Slot ".inner_args":
## list()
##
##
## Slot "rootFUN_results":
## $root
## [1] 5.044563 10.041239
##
## $f.root
## [1] -2.131628e-14 4.654055e-13
##
## $iter
## [1] 4
##
## $estim.precis
## [1] 2.433609e-13
##
##
## Slot "sandwich_components":
## An object of class "sandwich_components"
## Slot ".A":
## [,1] [,2]
## [1,] 1.00000e+02 0
## [2,] -1.65139e-11 100
##
## Slot ".A_i":
## $`1`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.752514 1
##
## $`2`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 10.81578 1
##
## $`3`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.842305 1
##
## $`4`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 6.653878 1
##
## $`5`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -11.75308 1
##
## $`6`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.291574 1
##
## $`7`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -6.300465 1
##
## $`8`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.043499 1
##
## $`9`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 9.831685 1
##
## $`10`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.9485972 1
##
## $`11`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.291621 1
##
## $`12`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.947683 1
##
## $`13`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -5.005397 1
##
## $`14`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -11.52285 1
##
## $`15`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -2.73693 1
##
## $`16`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] 0.9379618 1
##
## $`17`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 8.055833 1
##
## $`18`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.133716 1
##
## $`19`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.509455 1
##
## $`20`
## [,1] [,2]
## [1,] 1.0000 0
## [2,] 12.8324 1
##
## $`21`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -6.278834 1
##
## $`22`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.302893 1
##
## $`23`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -4.760703 1
##
## $`24`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.231159 1
##
## $`25`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -12.45122 1
##
## $`26`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -4.239123 1
##
## $`27`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.327459 1
##
## $`28`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 7.970532 1
##
## $`29`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.845686 1
##
## $`30`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 2.29405 1
##
## $`31`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.431482 1
##
## $`32`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -6.892173 1
##
## $`33`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 5.423243 1
##
## $`34`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.770696 1
##
## $`35`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 10.69635 1
##
## $`36`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.455444 1
##
## $`37`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -1.296536 1
##
## $`38`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.555264 1
##
## $`39`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.4103641 1
##
## $`40`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.559842 1
##
## $`41`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.356527 1
##
## $`42`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -17.18108 1
##
## $`43`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.165449 1
##
## $`44`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 5.191265 1
##
## $`45`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -7.943802 1
##
## $`46`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -8.998276 1
##
## $`47`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.587908 1
##
## $`48`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -4.218017 1
##
## $`49`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 3.262841 1
##
## $`50`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] 0.9841168 1
##
## $`51`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 8.188365 1
##
## $`52`
## [,1] [,2]
## [1,] 1.0000 0
## [2,] 13.1389 1
##
## $`53`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.2327012 1
##
## $`54`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.2827533 1
##
## $`55`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.912849 1
##
## $`56`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.786123 1
##
## $`57`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.9959563 1
##
## $`58`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -0.88019 1
##
## $`59`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 2.023568 1
##
## $`60`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.022743 1
##
## $`61`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.027283 1
##
## $`62`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] 0.3831244 1
##
## $`63`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -1.507302 1
##
## $`64`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 6.268315 1
##
## $`65`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.0352244 1
##
## $`66`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -5.127449 1
##
## $`67`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.109045 1
##
## $`68`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -5.612504 1
##
## $`69`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 1.53121 1
##
## $`70`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 6.681925 1
##
## $`71`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 4.967466 1
##
## $`72`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.522182 1
##
## $`73`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.8176918 1
##
## $`74`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 2.226746 1
##
## $`75`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.5266062 1
##
## $`76`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -16.42393 1
##
## $`77`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 2.777827 1
##
## $`78`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.069934 1
##
## $`79`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 10.05734 1
##
## $`80`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 17.25968 1
##
## $`81`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -10.00691 1
##
## $`82`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 4.629864 1
##
## $`83`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] 0.9030276 1
##
## $`84`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -4.278789 1
##
## $`85`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 4.872697 1
##
## $`86`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 5.576646 1
##
## $`87`
## [,1] [,2]
## [1,] 1.0000000 0
## [2,] -0.8347135 1
##
## $`88`
## [,1] [,2]
## [1,] 1.0000 0
## [2,] -2.4507 1
##
## $`89`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -8.775649 1
##
## $`90`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -5.087647 1
##
## $`91`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -1.953179 1
##
## $`92`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.095662 1
##
## $`93`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 7.542036 1
##
## $`94`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -2.216907 1
##
## $`95`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 15.07308 1
##
## $`96`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] -3.529053 1
##
## $`97`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] 12.51525 1
##
## $`98`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 1.206403 1
##
## $`99`
## [,1] [,2]
## [1,] 1.00000 0
## [2,] -8.77275 1
##
## $`100`
## [,1] [,2]
## [1,] 1.000000 0
## [2,] 4.526372 1
##
##
## Slot ".B":
## [,1] [,2]
## [1,] 1004.1239 366.7969
## [2,] 366.7969 24921.9638
##
## Slot ".B_i":
## $`1`
## [,1] [,2]
## [1,] 1.894083 11.21258
## [2,] 11.212579 66.37615
##
## $`2`
## [,1] [,2]
## [1,] 29.24529 103.8534
## [2,] 103.85343 368.7956
##
## $`3`
## [,1] [,2]
## [1,] 3.690828 12.20011
## [2,] 12.200110 40.32772
##
## $`4`
## [,1] [,2]
## [1,] 11.068524 3.417716
## [2,] 3.417716 1.055315
##
## $`5`
## [,1] [,2]
## [1,] 34.5337 -143.9309
## [2,] -143.9309 599.8807
##
## $`6`
## [,1] [,2]
## [1,] 2.708615 12.06794
## [2,] 12.067937 53.76737
##
## $`7`
## [,1] [,2]
## [1,] 9.9239647 0.36944079
## [2,] 0.3694408 0.01375322
##
## $`8`
## [,1] [,2]
## [1,] 2.315721 11.75630
## [2,] 11.756302 59.68362
##
## $`9`
## [,1] [,2]
## [1,] 24.16551 69.43268
## [2,] 69.43268 199.49496
##
## $`10`
## [,1] [,2]
## [1,] 0.2249591 4.655848
## [2,] 4.6558475 96.359348
##
## $`11`
## [,1] [,2]
## [1,] 0.4170714 -6.21539
## [2,] -6.2153901 92.62460
##
## $`12`
## [,1] [,2]
## [1,] 0.9483677 -8.855017
## [2,] -8.8550173 82.680306
##
## $`13`
## [,1] [,2]
## [1,] 6.263501 9.454541
## [2,] 9.454541 14.271306
##
## $`14`
## [,1] [,2]
## [1,] 33.1940 -133.3929
## [2,] -133.3929 536.0505
##
## $`15`
## [,1] [,2]
## [1,] 1.872697 11.17836
## [2,] 11.178365 66.72508
##
## $`16`
## [,1] [,2]
## [1,] 0.2199431 -4.60600
## [2,] -4.6060002 96.45785
##
## $`17`
## [,1] [,2]
## [1,] 16.22411 24.90410
## [2,] 24.90410 38.22792
##
## $`18`
## [,1] [,2]
## [1,] 1.138186 9.498294
## [2,] 9.498294 79.264346
##
## $`19`
## [,1] [,2]
## [1,] 1.574341 10.62365
## [2,] 10.623649 71.68836
##
## $`20`
## [,1] [,2]
## [1,] 41.16761 199.7130
## [2,] 199.71303 968.8513
##
## $`21`
## [,1] [,2]
## [1,] 9.8559376 0.58173782
## [2,] 0.5817378 0.03433655
##
## $`22`
## [,1] [,2]
## [1,] 2.727275 -12.07862
## [2,] -12.078619 53.49407
##
## $`23`
## [,1] [,2]
## [1,] 5.666072 10.41443
## [2,] 10.414434 19.14208
##
## $`24`
## [,1] [,2]
## [1,] 2.610097 -12.00560
## [2,] -12.005600 55.22187
##
## $`25`
## [,1] [,2]
## [1,] 38.75822 -178.7807
## [2,] -178.78072 824.6650
##
## $`26`
## [,1] [,2]
## [1,] 4.49254 11.76081
## [2,] 11.76081 30.78805
##
## $`27`
## [,1] [,2]
## [1,] 1.354266 10.10929
## [2,] 10.109287 75.46349
##
## $`28`
## [,1] [,2]
## [1,] 15.88235 23.27837
## [2,] 23.27837 34.11854
##
## $`29`
## [,1] [,2]
## [1,] 3.697326 12.19835
## [2,] 12.198350 40.24523
##
## $`30`
## [,1] [,2]
## [1,] 1.315666 -10.00845
## [2,] -10.008449 76.13562
##
## $`31`
## [,1] [,2]
## [1,] 2.943767 12.17742
## [2,] 12.177423 50.37410
##
## $`32`
## [,1] [,2]
## [1,] 11.875512 -6.321063
## [2,] -6.321063 3.364557
##
## $`33`
## [,1] [,2]
## [1,] 7.352891 -7.289782
## [2,] -7.289782 7.227215
##
## $`34`
## [,1] [,2]
## [1,] 3.554538 12.22969
## [2,] 12.229690 42.07729
##
## $`35`
## [,1] [,2]
## [1,] 28.60297 99.27135
## [2,] 99.27135 344.53775
##
## $`36`
## [,1] [,2]
## [1,] 2.985024 -12.19118
## [2,] -12.191179 49.79017
##
## $`37`
## [,1] [,2]
## [1,] 0.4202515 6.236979
## [2,] 6.2369792 92.563397
##
## $`38`
## [,1] [,2]
## [1,] 3.159976 -12.23235
## [2,] -12.232354 47.35178
##
## $`39`
## [,1] [,2]
## [1,] 0.04209968 2.051644
## [2,] 2.05164409 99.982784
##
## $`40`
## [,1] [,2]
## [1,] 3.168118 -12.23361
## [2,] -12.233611 47.23979
##
## $`41`
## [,1] [,2]
## [1,] 2.816568 12.12490
## [2,] 12.124901 52.19587
##
## $`42`
## [,1] [,2]
## [1,] 73.79736 -547.6994
## [2,] -547.69940 4064.8425
##
## $`43`
## [,1] [,2]
## [1,] 0.3395676 -5.65340
## [2,] -5.6533998 94.12242
##
## $`44`
## [,1] [,2]
## [1,] 6.737307 -8.575793
## [2,] -8.575793 10.915967
##
## $`45`
## [,1] [,2]
## [1,] 15.77600 -22.77789
## [2,] -22.77789 32.88746
##
## $`46`
## [,1] [,2]
## [1,] 20.24224 -45.89573
## [2,] -45.89573 104.06051
##
## $`47`
## [,1] [,2]
## [1,] 3.218271 12.24009
## [2,] 12.240091 46.55289
##
## $`48`
## [,1] [,2]
## [1,] 4.447916 11.79636
## [2,] 11.796364 31.28526
##
## $`49`
## [,1] [,2]
## [1,] 2.661533 -12.03940
## [2,] -12.039404 54.46006
##
## $`50`
## [,1] [,2]
## [1,] 0.2421215 -4.821738
## [2,] -4.8217380 96.022702
##
## $`51`
## [,1] [,2]
## [1,] 16.76233 27.51737
## [2,] 27.51737 45.17307
##
## $`52`
## [,1] [,2]
## [1,] 43.15767 217.5567
## [2,] 217.55671 1096.6978
##
## $`53`
## [,1] [,2]
## [1,] 0.01353747 1.166729
## [2,] 1.16672924 100.554795
##
## $`54`
## [,1] [,2]
## [1,] 0.01998735 1.416771
## [2,] 1.41677076 100.425482
##
## $`55`
## [,1] [,2]
## [1,] 0.9147474 -8.728798
## [2,] -8.7287978 83.292847
##
## $`56`
## [,1] [,2]
## [1,] 1.94062 11.28466
## [2,] 11.28466 65.62002
##
## $`57`
## [,1] [,2]
## [1,] 0.2479823 4.876828
## [2,] 4.8768280 95.907875
##
## $`58`
## [,1] [,2]
## [1,] 0.1936836 4.33386
## [2,] 4.3338599 96.97434
##
## $`59`
## [,1] [,2]
## [1,] 1.023707 -9.123794
## [2,] -9.123794 81.315885
##
## $`60`
## [,1] [,2]
## [1,] 0.2615007 -5.001078
## [2,] -5.0010784 95.643278
##
## $`61`
## [,1] [,2]
## [1,] 1.027469 9.13673
## [2,] 9.136730 81.24805
##
## $`62`
## [,1] [,2]
## [1,] 0.03669607 -1.916492
## [2,] -1.91649203 100.090877
##
## $`63`
## [,1] [,2]
## [1,] 0.5679896 7.139522
## [2,] 7.1395221 89.742452
##
## $`64`
## [,1] [,2]
## [1,] 9.8229447 -0.68416849
## [2,] -0.6841685 0.04765236
##
## $`65`
## [,1] [,2]
## [1,] 0.0003101896 0.1768428
## [2,] 0.1768428421 100.8202487
##
## $`66`
## [,1] [,2]
## [1,] 6.572683 8.892421
## [2,] 8.892421 12.030877
##
## $`67`
## [,1] [,2]
## [1,] 1.112018 9.416064
## [2,] 9.416064 79.730991
##
## $`68`
## [,1] [,2]
## [1,] 7.875050 6.078871
## [2,] 6.078871 4.692373
##
## $`69`
## [,1] [,2]
## [1,] 0.5861514 -7.238864
## [2,] -7.2388645 89.398679
##
## $`70`
## [,1] [,2]
## [1,] 11.16203 3.744520
## [2,] 3.74452 1.256172
##
## $`71`
## [,1] [,2]
## [1,] 6.168929 -9.617783
## [2,] -9.617783 14.994783
##
## $`72`
## [,1] [,2]
## [1,] 0.5792591 -7.201425
## [2,] -7.2014253 89.529060
##
## $`73`
## [,1] [,2]
## [1,] 0.167155 4.036979
## [2,] 4.036979 97.497532
##
## $`74`
## [,1] [,2]
## [1,] 1.239600 -9.799509
## [2,] -9.799509 77.468851
##
## $`75`
## [,1] [,2]
## [1,] 0.06932852 2.625635
## [2,] 2.62563494 99.438996
##
## $`76`
## [,1] [,2]
## [1,] 67.43633 -471.3264
## [2,] -471.32637 3294.1968
##
## $`77`
## [,1] [,2]
## [1,] 1.929081 -11.26709
## [2,] -11.267086 65.80710
##
## $`78`
## [,1] [,2]
## [1,] 2.356123 11.79640
## [2,] 11.796397 59.06101
##
## $`79`
## [,1] [,2]
## [1,] 25.28754 76.66866
## [2,] 76.66866 232.44977
##
## $`80`
## [,1] [,2]
## [1,] 74.4741 556.0452
## [2,] 556.0452 4151.5939
##
## $`81`
## [,1] [,2]
## [1,] 25.03456 -75.0184
## [2,] -75.01840 224.7997
##
## $`82`
## [,1] [,2]
## [1,] 5.358911 -10.83927
## [2,] -10.839271 21.92419
##
## $`83`
## [,1] [,2]
## [1,] 0.2038647 -4.44171
## [2,] -4.4417103 96.77393
##
## $`84`
## [,1] [,2]
## [1,] 4.577009 11.69014
## [2,] 11.690144 29.85781
##
## $`85`
## [,1] [,2]
## [1,] 5.935795 -10.00229
## [2,] -10.002293 16.85467
##
## $`86`
## [,1] [,2]
## [1,] 7.774745 -6.319717
## [2,] -6.319717 5.136994
##
## $`87`
## [,1] [,2]
## [1,] 0.1741867 4.118081
## [2,] 4.1180809 97.358719
##
## $`88`
## [,1] [,2]
## [1,] 1.501483 10.46419
## [2,] 10.464191 72.92743
##
## $`89`
## [,1] [,2]
## [1,] 19.2530 -40.41960
## [2,] -40.4196 84.85658
##
## $`90`
## [,1] [,2]
## [1,] 6.471038 9.08196
## [2,] 9.081960 12.74633
##
## $`91`
## [,1] [,2]
## [1,] 0.9537271 8.874769
## [2,] 8.8747688 82.582870
##
## $`92`
## [,1] [,2]
## [1,] 1.097949 9.371054
## [2,] 9.371054 79.982427
##
## $`93`
## [,1] [,2]
## [1,] 14.22058 15.76036
## [2,] 15.76036 17.46687
##
## $`94`
## [,1] [,2]
## [1,] 1.228669 9.768323
## [2,] 9.768323 77.661390
##
## $`95`
## [,1] [,2]
## [1,] 56.79944 352.3951
## [2,] 352.39509 2186.3295
##
## $`96`
## [,1] [,2]
## [1,] 3.113554 12.22408
## [2,] 12.224084 47.99281
##
## $`97`
## [,1] [,2]
## [1,] 39.15787 182.2009
## [2,] 182.20092 847.7780
##
## $`98`
## [,1] [,2]
## [1,] 0.363852 -5.837414
## [2,] -5.837414 93.651817
##
## $`99`
## [,1] [,2]
## [1,] 19.24029 -40.35047
## [2,] -40.35047 84.62246
##
## $`100`
## [,1] [,2]
## [1,] 5.12201 -11.13313
## [2,] -11.13313 24.19881
##
##
## Slot ".ee_i":
## $`1`
## [1] -1.376257 -8.147156
##
## $`2`
## [1] 5.407891 19.204051
##
## $`3`
## [1] -1.921153 -6.350411
##
## $`4`
## [1] 3.326939 1.027285
##
## $`5`
## [1] -5.876538 24.492463
##
## $`6`
## [1] -1.645787 -7.332624
##
## $`7`
## [1] -3.1502325 -0.1172741
##
## $`8`
## [1] -1.521749 -7.725518
##
## $`9`
## [1] 4.915842 14.124269
##
## $`10`
## [1] -0.4742986 -9.8162797
##
## $`11`
## [1] 0.6458107 -9.6241674
##
## $`12`
## [1] 0.9738417 -9.0928712
##
## $`13`
## [1] -2.502699 -3.777738
##
## $`14`
## [1] -5.761424 23.152765
##
## $`15`
## [1] -1.368465 -8.168542
##
## $`16`
## [1] 0.4689809 -9.8212958
##
## $`17`
## [1] 4.027917 6.182873
##
## $`18`
## [1] -1.066858 -8.903053
##
## $`19`
## [1] -1.254727 -8.466898
##
## $`20`
## [1] 6.416199 31.126376
##
## $`21`
## [1] -3.1394168 -0.1853012
##
## $`22`
## [1] 1.651446 -7.313964
##
## $`23`
## [1] -2.380351 -4.375167
##
## $`24`
## [1] 1.615579 -7.431142
##
## $`25`
## [1] -6.22561 28.71698
##
## $`26`
## [1] -2.119561 -5.548698
##
## $`27`
## [1] -1.163730 -8.686972
##
## $`28`
## [1] 3.985266 5.841108
##
## $`29`
## [1] -1.922843 -6.343913
##
## $`30`
## [1] 1.147025 -8.725573
##
## $`31`
## [1] -1.715741 -7.097471
##
## $`32`
## [1] -3.446086 1.834273
##
## $`33`
## [1] 2.711621 -2.688348
##
## $`34`
## [1] -1.885348 -6.486701
##
## $`35`
## [1] 5.348174 18.561728
##
## $`36`
## [1] 1.727722 -7.056215
##
## $`37`
## [1] -0.6482681 -9.6209873
##
## $`38`
## [1] 1.777632 -6.881263
##
## $`39`
## [1] -0.2051821 -9.9991392
##
## $`40`
## [1] 1.779921 -6.873121
##
## $`41`
## [1] -1.678263 -7.224671
##
## $`42`
## [1] -8.590539 63.756117
##
## $`43`
## [1] 0.5827243 -9.7016712
##
## $`44`
## [1] 2.595632 -3.303932
##
## $`45`
## [1] -3.971901 5.734759
##
## $`46`
## [1] -4.499138 10.201005
##
## $`47`
## [1] -1.793954 -6.822968
##
## $`48`
## [1] -2.109008 -5.593323
##
## $`49`
## [1] 1.631421 -7.379706
##
## $`50`
## [1] 0.4920584 -9.7991174
##
## $`51`
## [1] 4.094182 6.721091
##
## $`52`
## [1] 6.56945 33.11643
##
## $`53`
## [1] -0.1163506 -10.0277014
##
## $`54`
## [1] -0.1413766 -10.0212515
##
## $`55`
## [1] 0.9564243 -9.1264915
##
## $`56`
## [1] -1.393061 -8.100619
##
## $`57`
## [1] -0.4979782 -9.7932566
##
## $`58`
## [1] -0.440095 -9.847555
##
## $`59`
## [1] 1.011784 -9.017532
##
## $`60`
## [1] 0.5113714 -9.7797382
##
## $`61`
## [1] -1.013641 -9.013770
##
## $`62`
## [1] 0.1915622 -10.0045428
##
## $`63`
## [1] -0.7536508 -9.4732493
##
## $`64`
## [1] 3.1341577 -0.2182942
##
## $`65`
## [1] -0.0176122 -10.0409287
##
## $`66`
## [1] -2.563725 -3.468555
##
## $`67`
## [1] -1.054522 -8.929221
##
## $`68`
## [1] -2.806252 -2.166189
##
## $`69`
## [1] 0.7656052 -9.4550875
##
## $`70`
## [1] 3.340962 1.120791
##
## $`71`
## [1] 2.483733 -3.872310
##
## $`72`
## [1] 0.7610908 -9.4619797
##
## $`73`
## [1] -0.4088459 -9.8740839
##
## $`74`
## [1] 1.113373 -8.801639
##
## $`75`
## [1] -0.2633031 -9.9719103
##
## $`76`
## [1] -8.211963 57.395094
##
## $`77`
## [1] 1.388914 -8.112158
##
## $`78`
## [1] -1.534967 -7.685116
##
## $`79`
## [1] 5.028672 15.246303
##
## $`80`
## [1] 8.629838 64.432864
##
## $`81`
## [1] -5.003455 14.993320
##
## $`82`
## [1] 2.314932 -4.682328
##
## $`83`
## [1] 0.4515138 -9.8373741
##
## $`84`
## [1] -2.139394 -5.464230
##
## $`85`
## [1] 2.436349 -4.105444
##
## $`86`
## [1] 2.788323 -2.266494
##
## $`87`
## [1] -0.4173568 -9.8670522
##
## $`88`
## [1] -1.225350 -8.539756
##
## $`89`
## [1] -4.387824 9.211763
##
## $`90`
## [1] -2.543824 -3.570200
##
## $`91`
## [1] -0.9765895 -9.0875118
##
## $`92`
## [1] -1.047831 -8.943289
##
## $`93`
## [1] 3.771018 4.179338
##
## $`94`
## [1] -1.108453 -8.812570
##
## $`95`
## [1] 7.53654 46.75820
##
## $`96`
## [1] -1.764527 -6.927685
##
## $`97`
## [1] 6.257625 29.116627
##
## $`98`
## [1] 0.6032015 -9.6773869
##
## $`99`
## [1] -4.386375 9.199047
##
## $`100`
## [1] 2.263186 -4.919229
##
##
##
## Slot "GFUN":
## function ()
## NULL
## <bytecode: 0x7f8b6da0a2f8>
##
## Slot "corrections":
## list()
##
## Slot "estimates":
## [1] 5.044563 10.041239
##
## Slot "vcov":
## [,1] [,2]
## [1,] 0.10041239 0.03667969
## [2,] 0.03667969 2.49219638
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.